• Title/Summary/Keyword: Inductive power transmission

Search Result 91, Processing Time 0.023 seconds

Analysis of Inductive Interference from EHV Transmission to buried Gas Pipelines (초고압 송전선로에서 가스관에 미치는 유도 장해 해석)

  • Lee, Seung-Youn;Ko, Eun-Young;Yun, Suk-Moo;Park, Nam-Ok;Shin, Myung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.458-460
    • /
    • 2000
  • In this paper, we analyze the inductive coupling between overhead power transmission lines and neighbouring gas pipelines or other conductors, when they parallel to a line section in a phase-to-earth fault is assumed on the transmission line. A numerical procedure employing the finite-element method(FEM) is used in conjunction with Faraday's law, in order to predict the current in a faulted transmission line as well as the induced voltages across points on a pipeline running parallel to the faulted line and remote earth. The results lead to conclusion that may be useful to power system engineers.

  • PDF

A Planar Spiral Antenna of Multi-Tabs for Wireless Power Transmission of Inductive Coupling (전자기 유도 방식 무선 전력 전송을 위한 다중 탭을 갖는 평판형 스파이럴 안테나)

  • Kim, Jin-Wook;Son, Hyeon-Chang;Jeong, Seung-Ho;Kim, Seung-Gyun;Kim, Kwan-Ho;Park, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.753-760
    • /
    • 2009
  • In this paper, a novel planar spiral antenna of multi-tabs is proposed for wireless power transmission system based on low frequency magnetic inductive coupling. The proposed antenna has higher transmission efficiency than conventional antennas such a rectangular spiral antenna and a spiral antenna. Also, it has a useful property of uniform power transmission in the region of the antenna aperture. For verification, a transmitting antenna and a receiving one for a wireless power transmission system using magnetic inductive coupling of 132 kHz low frequency are designed and tested. The transmitting antenna has three-tabs spiral of unequal-space for higher uniform magnetic coupling in the antenna aperture. For reducing the receiving antenna size, two receiving antennas of unequal space two-tabs on one-side and series double sides as well are designed, respectively. From measurement, transmission efficiency of the proposed antennas is improved up to $3{\sim}10$ dB compared to conventional antennas.

A Study of the WPT Module Using Inductive Coupling for the Convergence Applications (융합형 어플리케이션을 위한 자기유도 방식의 무선전력전송 모듈설계에 대한 연구)

  • Jeong, Byeong-Ho;Park, Ju-Hoon;Kang, Bo-An
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.2
    • /
    • pp.57-64
    • /
    • 2015
  • Inductive Power Transfer (IPT) systems have successfully been developed and used to replace traditional conductive power transfer systems where physical connection is either inconvenient or impossible, such as biomedical implants, undersea vehicles, and contactless battery chargers of robots, for providing power to movable or detachable loads. Inductive Coupling uses magnetic fields to transfer power. There is a primary coil, which generates a magnetic field. Then there is another secondary coil which is composed of a capacitor and a coil, the capacitor creates a circuit with the primary and secondary coils. This paper discusses design method and several implementation alternatives for wireless energy transmission systems. It presents realization examples for these alternatives. Wireless energy transmission is investigated in numerous convergence applications due to its simplicity and advantages.

Simulation for current limiting characteristics of the resistive and inductive SFCL with line-to-ground fault

  • Choi, Hyo-Sang;Hwang, Si-Dole;Kim, Sang-Joon;Han, Byoung-Sung
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.73-80
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with 100 $\Omega$ of impedance for line-to-ground faults in the 154 kV transmission system. The fault simulation at the phase angles $0^{\circ}$, $^45{\circ}$, and $90^{\circ}$ showed that the resistive SFCL limits the fault current less than 17 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppresses the current below 14 kA, but with 5 kA of DC component which decreases to zero in 5 cycles. We concluded that the inductive SFCL has higher performance in current limiting effect, but the resistive SFCL was better from the viewpoint of less DC components.

  • PDF

Characteristic Analysis of The Efficiency of the Power Transfer of the IPT Using LLC Resonant Inverter (LLC 공진형 인버터를 이용한 IPT 전력전송 효율 특성 분석)

  • Kim, Ki-Byoung;Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.401-408
    • /
    • 2011
  • Nowadays, the development of sustainable transportation has been researched all over the world and Korea Railroad Research Institute (KRRI) is conducting a study in order to apply the sustainable Contactless Inductive Power Supply Technology to the electric railway system. But, inherent large flux leakage has limited the high power transmission because the gap of the Inductive Power Transformer(IPT) is much larger than one of the conventional transformers. In this study, a method to compensate the leakage flux and improve the power transmission by using LLC resonant inverter was proposed, incorporated in a built system, and verified by experimental work.

  • PDF

A study on operating properties of superconducting fault current limiter in the line-to-line fault (선간 단락사고에 대한 초전도 한류기의 동작특성에 대한 연구)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.86-88
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with $100{\Omega}$ of quench impedance for a line-to-line fault in the 154 kV transmission system. The fault simulation at the phase angles $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ showed that the resistive SFCL limited the fault current less than 15 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 13 kA, but with $2{\sim}3\;kA$ of DC component which decreased to zero in 6 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

Analysis of a Linkage Coil for Wireless Power Transmission by Inductive Coupling

  • Gimm, Youn-Myoung;Yoo, Ho-Sang;Kim, Myoung-Wha;Yoo, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • Magnetic coupling delivering wireless power in capsular endoscope(CE) is described in this paper. The characteristic of the magnetic flux linkage coil which generates the induced electromotive force(emf) under the magnetic field was analyzed. With the analyzed results, a magnetic flux linkage coil system was developed and tested. It was confirmed that the magnetic flux linkage coil system could supply more than 50 mW power at 125 kHz without changing the structure of conventional CE.

Current limiting characteristics of the resistive and inductive SFCL in the double line-to-ground fault (2선 지락사고에 대한 저항형과 유도형 한류기의 전류제한특성)

  • Choi, Hyo-sang;Hyun, Ok-Bae;Kim, Sang-Joon;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1369-1372
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with 100${\Omega}$ of Quench impedance for a double line-to-ground fault, in the 154 kV transmission system. The fault simulation at the phase angles $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ showed that the resistive SFCL limited the fault current less than 17 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 12 kA, but with 3$\sim$5 kA of DC component which decreased to zero in 6 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

Three-Phase Current Balancing Strategy with Distributed Static Series Compensators

  • Yoon, Hanjong;Yoon, Dongkwan;Choi, Dongmin;Cho, Younghoon
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.803-814
    • /
    • 2019
  • This paper proposes a three-phase current balancing strategy in a power transmission system employing distributed static series compensators (DSSCs). With the proposed variable quadrature voltage injection method, the DSSC emulates either an inductive or a capacitive impedance into the transmission line, and the magnitudes of the phase currents are balanced. Hence, the phase imbalances in the power transmission system are significantly reduced. As a result, the power transfer capability of the transmission lines can be improved. The operational principle of the DSSCs, the hardware structure and the control algorithm are described in detail. Finally, the theoretical analyses and the proposed strategy are experimentally verified through a scaled down transmission system with DSSC prototypes.