• Title/Summary/Keyword: Induction heating system

Search Result 195, Processing Time 0.036 seconds

Induction Heating System with Thyristor PWM Rectifier (싸이리스터 PWM 정류기를 이용한 유도가열장치)

  • Han, Byung-Moon;Choy, Young-Do;Lee, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.254-258
    • /
    • 2001
  • This paper proposes a new induction heating system composed of a hyristor PWM rectifier with a resonant commutation circuit. The operation of proposed system as first analyzed by a theoretical approach with equivalent circuits. And its verification was performed by computer simulations with EMTP. The proposed system can provide a solution for the power factor problem of the existing high-power induction heating system. which uses the line-commutated thyristor bridge in rectifier side.

  • PDF

A Study on the Concave Type Hull Plate Forming using Induction Heating System (고주파 유도가열을 이용한 오목 곡면 곡가공에 관한 연구)

  • Hyun, Chung Min;Kim, Dae Kyung;Mun, Seung Hwan;Park, Jung Seo;Dohr, Kyu Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.128-134
    • /
    • 2019
  • In shipbuilding, accurate fabrication of curved hull plates is one of the most important steps, since the shape of ship hull, which is very critical in the overall performance of a ship, is a collection of such plates. The curved hull plates forming process requires a significant amount of time by skilled workers in shipbuilding. In general, the workers cause thermal distortion in the plate and forming initial shape using gas heat source. So shipbuilding companies need skilled workers who have long experience. To solve the problem, a lot of researchers tried to develop automation system for curved hull plates. In this paper, we propose automatic heating system with gantry robot, high frequency induction heater to replace the gas heat source and automatic measurement system. We apply the system to forming concave type plate that is actually used in ship manufacturing. In addition, a system was developed to automatically generate heating information, such as the heating location and the heating speed, for actual heating process. Then the system was applied to the actual heating material. It is shown that the proposed triangle heating pattern makes desired concave shape successfully. The induction heating system showed that it can be used for automation system of curved hull plates forming process replacing gas heat source.

Power Tracking Control of Domestic Induction Heating System using Pulse Density Modulation Scheme with the Fuzzy Logic Controller

  • Nagarajan, Booma;Sathi, Rama Reddy;Vishnuram, Pradeep
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1978-1987
    • /
    • 2014
  • Power requirement to the induction heating system varies during the heating process. A closed loop control is required to have a smooth control over the power. In this work, a constant frequency pulse density modulation based power tracking control scheme for domestic induction heating system is developed using the Fuzzy Logic Controller. In the conventional power modulation schemes, the switching losses increase with the change in the load. The proposed pulse density modulation scheme maintains minimum switching losses for the entire load range. This scheme is implemented for the class-D series resonant inverter system. Fuzzy logic controller based power tracking control scheme is developed for domestic induction heating power supply for various power settings. The open loop and closed loop simulation studies are done using the MATLAB/Simulink simulation tool. The control logic is implemented in hardware using the PIC16F877A microcontroller. Fuzzy controller tracks the set power by changing the pulse density of the gate pulses applied to the inverter. The results obtained are used to know the effectiveness of the fuzzy logic controller to achieve the set power.

Effects of Ball Milling for Elemental Powders on Ni-Al based Intermetallics Coating on Mild Steel through Induction Heating Process (Ni-Al계 금속간화합물의 고주파 연소합성코팅에 미치는 볼 밀링의 영향)

  • Lee, Han-Young;Park, Won-Kyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.296-302
    • /
    • 2017
  • Ball milling of elemental powders in advance and using an induction heating system for intermetallic coatings are known to enhance the reactivity of combustion synthesis. In this work, the effects of simultaneously applying these two incentive methods on the properties of intermetallic coatings are studied. Ni-Al powder compacts ball-milled with three different ball-to-powder weight ratio mixtures are synthesized and coated on mild steel by combustion synthesis in an induction heating system. Consequently, similar to an electrical heating system, the positive effects of ball milling on the combustion synthesis are confirmed in the induction heating system. The enhancement in synthetic reactivity achieved by applying the two incentive methods at the same time is greater than that by applying each incentive method separately. In particular, the enhancement is remarkable at low reaction temperature. However, there are limitations to improving the reactivity by simultaneously applying the two incentive methods to the combustion synthesis, unlike the reaction temperature. The microstructure and hardness of the coating layer are both influenced by the ball-charging ratio employed in the ball-milling process.

A Study on the Development of Induction Heating Mass Production System for Moisture Removal of Secondary Battery (이차전지 수분 제거용 유도가열 양산 시스템 개발에 관한 연구)

  • Wangeun Ji;Sunghwan Kim;Haiyoung Jung;Seok-Hyun Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.42-48
    • /
    • 2023
  • Abstract: In this study, an induction heating system using resonance is developed to remove remaining moisture and contaminations which could be generated during fabricating secondary batteries. This system is composed of power supply and induction coil. Power supply needs an oscillator, zero crossing detection, frequency tracking function, and induction coil needs a dummy coil to obtain a uniform temperature distribution. It is very important to obtain a uniform heating temperature distribution of battery cell case in the induction heating system before pouring electrolyte into battery cell. Experimental results show a temperature distribution deviation of below 1℃ in the external position of battery cell cases. As well, the temperature of battery cell itself shows distribution of 40℃±3℃.

The Study on High-Frequency Switching Drive Method Using IGBT For Non-Magnetic Induction Heating System (비자성 유도가영시스템을 위한 IGBT를 이용한 고속스위칭 구동에 관한 연구)

  • 김정태;권경안;정윤철;박병욱
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.24-26
    • /
    • 1998
  • A new high frequency switching drive method using IGBT is proposed for non-magnetic induction heating system. Using this method, the switching and conduction losses of the switching devices can be reduced. In addition, since IGBT cosl is lower than MOS-FET one, the system cosl can be remarkably pared down. The prototype induction heating system with 1.2㎾ power consumption is builted and tested to verify the operation of the proposed high frequency switching drive method.

  • PDF

A study on the frequency control of Induction Heating System for Using Resonant Inverter (공진형 인버터을 이용한 유도가열 시스템의 주파수 제어에 관한 연구)

  • Woo, Hyoung-Gyun;Yoo, Jae-Hoon;Kwon, Hyuk-Min;Sin, Dae-Chul
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.83-85
    • /
    • 2007
  • In this paper is described frequency control of Induction Heating System for using the resonant high-frequency inverter. To follow in output temperature and frequency in order to change, it controls a system and it confirms the electric change of induction heating system.

  • PDF

Analysis of Induction Heating according to Coil Shapes on the V-groove Weld Joint (V-groove를 가진 모재에서 코일 형상에 따른 유도가열 해석)

  • Ahn, Soo Deok;Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.167-172
    • /
    • 2015
  • In order to prevent crack in thick weld zones, the preheating process such as induction and gas torch heating needs to be applied. Among them induction heating is the most effective heat source because it has rare thermal effect and very rapid heating characteristics. In this paper, when the induction heating method is used to improve arc welding, the temperature distribution and magnetic field density of the welding zones are analyzed by simultaneously solving heat transfer and electromagnetic field equation. In particular, cone and flat type coils are designed and induction heating effects of each type are compared to identify heating characteristics on a V-groove weld joint. As a result, a cone shape coil is more efficient in the preheating process. When induction heating and arc welding system is designed for thick plate with V-groove weld joint, the results in this paper could be applied.

The Analysis of Inverter Circuit with Induction Heating Load (유도가열 부하를 갖는 인버터 회로의 해석에 관한 연구)

  • Roh, H.S.;Kwon, K.A.;Yang, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.424-427
    • /
    • 1995
  • This paper proposes an analysis of an inverter circuit which has an induction heating load. Two major kinds of the inverters are E-class quasi resonant and half-bridge type. The analyses of induction heating load property and operation property are introduced. A simulation program which implements those properties is also introduced. The results of the simulation program are verified through experimental results.

  • PDF

Simulation of Curved Surface Forming of Steel Plate by Induction Heating (유도 가열을 이용한 강판의 곡면 성형 시뮬레이션)

  • Ryu, Hyun-Su;Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4381-4387
    • /
    • 2015
  • Ship hull is a compound curved shape and most of shipyards have been using gas heating method for the surface forming of steel plate. This traditional forming process have problems such as difficulties in heat input control and poor working conditions due to loud noise and air contamination. Recently, researches on automatic hull forming system have been conducted using high frequency induction heating method which have good control ability and favorable working environment. In this study, the induction heating simulation system for curved surface forming of steel plate was developed and induction heating experiments were performed. Based on the results of this study, efficient induction heating coil design and optimal heating conditions for the automatic hull forming system can be obtained.