• Title/Summary/Keyword: Induction heating

Search Result 575, Processing Time 0.029 seconds

Development a Two Step Heater Using Induction Heating Based on o High Frequency Resonant Inverter (고주파 공진형 인버터를 이용한 유도가열형 2단 히터)

  • Shin, Dae-Cheul;Kwon, Hyuk-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.81-86
    • /
    • 2005
  • Proposed induction-heated system is innovative system which applied special high-frequency power circuit technique for thermal converse technique and IH(Induction-Heating) magnetic induction heating generated from induction-heated metallic package that is for distillation unit. In this occurs not burning, so that the working environment can be improved. This electromagnetic induction heating technique is used high frequency inverter. By using high frequency inverter high frequency alternative current (HFAC) in the range of [kHz] can be made with conventional alternative current In this contribution IGBT module is used for high frequency inverter. In this paper are discussed action analysis and characteristics analysis of 1.5[kW]-Class half-bridge resonant inverter system and resonant metallic packaged. In addition, by using this system,t how two step heating superheated steam generator is developed and application of system are also discussed.

A Study on the Frequency Control on the Induction Heating System Using Two Step Resonant Inverter (공진형 인버터를 이용한 2단 유도가열 시스템의 주파수제어에 관한 연구)

  • Yoo, Jae-Hoon;Shin, Dae-Cheul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2008
  • Proposed induction-heated system is innovative system which applied special high-frequency power circuit technique for thermal converse technique and IH(Induction-Heating) magnetic induction heating generated from induction-heated metallic package that is for distillation unit. In this occurs not burning, so that the working environment can be improved. This electromagnetic induction heating technique is used high frequency inverter. By using high frequency inverter high frequency alternative current (HFAC) in the range of [kHz] can be made with conventional alternative current. In this contribution IGBT module is used for high frequency inverter. In this paper are discussed action analysis and characteristics analysis of 1.5[kW]-Class half-bridge resonant inverter system and resonant metallic package. In addition, by using this system, how two step heating superheated steam generator is developed and application of system are also discussed.

The Study of Induction Heating Apparatus with High Efficiency (고효율 유도가열 전열장치 개발에 관한 연구)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.185-189
    • /
    • 2016
  • Energy-saving heat depending on the country's rise in oil prices up to the product development is regarded as pending issues. Therefore, in recent years, been a continuing research studies developed for increasing the economic efficiency and reliability achieved in effectively using the side of the energy for heating using electrical to address these problems and, in particular made active the technology developed for high performance and renal material becoming. This paper is to study the development of highly efficient induction heating device according to the excellent heat transfer characteristics for energy transfer. Induction heating is used as the phenomenon of electromagnetic induction, such as heat transfer conduction or convection of the existing methods are no different. Medium heat without beating is absorbed directly into the water column switched rapidly, have features that heats evenly. In addition, high-frequency induction heating in a variety of frame designs. Heating element heats only when utilized properly, it is possible to heat the focus.

Characteristics of Mechanical Properties and Micro Structure according to High-Frequency Induction Heating Conditions in Roll Forming Process of a Sill Side Part (실사이드 부품의 롤포밍공정에서 고주파유도가열 부가조건에 따른 기계적 특성 및 미세조직 평가)

  • Kim, Kun-Young;Choy, Lee-Jon;Shin, Hyun-Il;Cho, Jun-Haeng;Lee, Chang-Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.87-94
    • /
    • 2017
  • Hot stamping processes are possible for tensile strength 1.4 GPa but the strength reduction is appeared from the cooling performance unbalance. And the strength of roll forming process is below than that of hot stamping process owing to using the steel which is lower strength of boron steel. In this study, We provide roll forming process asssisted high-frequency induction heating to solve the problem of conventional one. The experiments were carried out at under various sill side part conditions: high-frequency induction heating conditions of 15, 18, 21, 24, 27 and 30 kW. The high-frequency induction heating temperature was checked with Infrared camera and the sill side parts of mechanical properties and microstructure were measured. The heating temperature of high frequency induction was measured to max $850^{\circ}C$ under the coil power of 30 kW. The tensile strength was 1.5 GPa and hardness was 490 Hv. The martensite structure was discovered under coil power of 30 kW. The weight of steel material sill side having thickness 1.5 mm and the boron steel sill side having thickness 1.2 mm were compared to weight effect. The boron steel sill side reduced 11.5% compared to steel. Consequently, manufacturing process of 1.5 giga-grade's sill side part was successfully realized by the roll forming assisted high-frequency induction heating methods.

Power Tracking Control of Domestic Induction Heating System using Pulse Density Modulation Scheme with the Fuzzy Logic Controller

  • Nagarajan, Booma;Sathi, Rama Reddy;Vishnuram, Pradeep
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1978-1987
    • /
    • 2014
  • Power requirement to the induction heating system varies during the heating process. A closed loop control is required to have a smooth control over the power. In this work, a constant frequency pulse density modulation based power tracking control scheme for domestic induction heating system is developed using the Fuzzy Logic Controller. In the conventional power modulation schemes, the switching losses increase with the change in the load. The proposed pulse density modulation scheme maintains minimum switching losses for the entire load range. This scheme is implemented for the class-D series resonant inverter system. Fuzzy logic controller based power tracking control scheme is developed for domestic induction heating power supply for various power settings. The open loop and closed loop simulation studies are done using the MATLAB/Simulink simulation tool. The control logic is implemented in hardware using the PIC16F877A microcontroller. Fuzzy controller tracks the set power by changing the pulse density of the gate pulses applied to the inverter. The results obtained are used to know the effectiveness of the fuzzy logic controller to achieve the set power.

Effects of Ball Milling for Elemental Powders on Ni-Al based Intermetallics Coating on Mild Steel through Induction Heating Process (Ni-Al계 금속간화합물의 고주파 연소합성코팅에 미치는 볼 밀링의 영향)

  • Lee, Han-Young;Park, Won-Kyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.296-302
    • /
    • 2017
  • Ball milling of elemental powders in advance and using an induction heating system for intermetallic coatings are known to enhance the reactivity of combustion synthesis. In this work, the effects of simultaneously applying these two incentive methods on the properties of intermetallic coatings are studied. Ni-Al powder compacts ball-milled with three different ball-to-powder weight ratio mixtures are synthesized and coated on mild steel by combustion synthesis in an induction heating system. Consequently, similar to an electrical heating system, the positive effects of ball milling on the combustion synthesis are confirmed in the induction heating system. The enhancement in synthetic reactivity achieved by applying the two incentive methods at the same time is greater than that by applying each incentive method separately. In particular, the enhancement is remarkable at low reaction temperature. However, there are limitations to improving the reactivity by simultaneously applying the two incentive methods to the combustion synthesis, unlike the reaction temperature. The microstructure and hardness of the coating layer are both influenced by the ball-charging ratio employed in the ball-milling process.

A Study on the Development of Induction Heating Mass Production System for Moisture Removal of Secondary Battery (이차전지 수분 제거용 유도가열 양산 시스템 개발에 관한 연구)

  • Wangeun Ji;Sunghwan Kim;Haiyoung Jung;Seok-Hyun Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.42-48
    • /
    • 2023
  • Abstract: In this study, an induction heating system using resonance is developed to remove remaining moisture and contaminations which could be generated during fabricating secondary batteries. This system is composed of power supply and induction coil. Power supply needs an oscillator, zero crossing detection, frequency tracking function, and induction coil needs a dummy coil to obtain a uniform temperature distribution. It is very important to obtain a uniform heating temperature distribution of battery cell case in the induction heating system before pouring electrolyte into battery cell. Experimental results show a temperature distribution deviation of below 1℃ in the external position of battery cell cases. As well, the temperature of battery cell itself shows distribution of 40℃±3℃.

Control of Cell Morphology of Al Foams fabricated by P/M Method and Induction Heating (P/M법과 유도가열법을 이용한 A1 Foam 재료의 기공제어)

  • Youn S. W.;Lee S. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.289-292
    • /
    • 2001
  • Aluminium foams, having a closed cell structure, fabricated by applying the powder compact method and an induction heating were studied. The powdered A6061 mixed with the powdered titanium hydride as a foaming agent was hot pressed into a foamable precursor. The resulting precursor was foamed by induction heating up to desired temperature. The effects of the titanium hydride content ($0.3{\~}1.5 wt.\%$), pressing pressure of the foamable precursor material (50-150kN), the forming temperature ($610{\~}690^{\circ}C$) and heating rate during foaming on the expansion behavior of the foam were investigated.

  • PDF

Analysis of Induction Heating System using the Impedance Boundary Condition (임피던스 경계조건을 이용한 유도가열 시스템의 해석)

  • 김우균;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.258-261
    • /
    • 1998
  • Induction heating is commonly used in process heating prior to metal working and in heat treationg, welding, and melting. For an analysis of induction heating system, it is necessary to calculate eddy currents in conductors induced by a source current. This study examines the use of the Impedance Boundary Condition for the reduction of the field problem encountered in the computation of eddy currents in non-magnetic and magnetic conductors with small penetration depths to a simpler exterior problem. The electric field intensities on the conductor surfaces computed by using the IBC are compared with the values obtained from the full region solution (i.e. without the use of IBC) and those agree well with the latter.

  • PDF