• 제목/요약/키워드: Induction expression

검색결과 2,156건 처리시간 0.033초

The role of defense-related genes and oxidative burst in the establishment of systemic acquired resistance to Xanthomonas campestris pv. vesicatoria in Capsicum annuum(oral)

  • Lee, S.C.;B.K. Hwang
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.64.1-64
    • /
    • 2003
  • Inoculation of primary pepper leaves with an avirulent strain of Xanthomonas campestris pv. vesicatoria induced systemic acquired resistance (SAR) in secondary leaves. This SAR response was accompanied by the systemic expression of defense-related genes, a systemic microoxidative burst generating H2O2, and the systemic induction of ion-leakage and callose deposition in the non-inoculated, secondary leaves. Some defense-related genes encoding PR-1, chitinase, peroxidase, PR10, thionin, defensin and zinc-finger protein were distiilctly induced in the systemic leaves. The systemically striking accumulation of H$_2$O$_2$and strong increase in peroxidase activity in pepper was suggested to contribute to the triggering of cell death In the systemic micro-HRs, leading to the induction of SAR. Treatment of non-inoculated, secondary leaves with diphenylene iodinium (DPI), an inhibitor of the oxidative burst, substantially reduced the induction of some defense-related genes and subsequently SAR.

  • PDF

Up-regulation of Heme Oxygenase-1 Expression by cAMP-elevating Agents in RAW 264.7 cells

  • Ko, Young-Shin;Park, Min-Kyu;Kang, Young-Jin;Lee, Young-Soo;Seo, Han-Geuk;Lee, Duck-Hyung;Yunchoi, Hye-Sook;Chong, Won-Seog;Chang, Ki-Churl
    • Biomolecules & Therapeutics
    • /
    • 제10권2호
    • /
    • pp.71-77
    • /
    • 2002
  • Heme oxygenase-1 (HO-1) is the inducible from of the rate-limiting enzyme of heme degradation; it regulates the cellular contents of heme. HO-1 is up-regulated by various stimuli including oxidative stress so that it is thought to participate in general cellular defense mechanisms against oxidative stress in mammalian cells. To investigate the role of the cAMP-dependent protein kinase A (PKA) signaling pathway on nitrogen oxidative stress-induced HO-1 gene expression, RAW 264.7 cell cultures were treated with sodium nitroprusside (SNP). SNP increased the expression of HO-1 mRNA and protein, time- and concentration-dependently. Treatment with H89, PKA inhibitor, but not LY83583, guanylate cyclase inhibitor, significantly diminished the HO-1 expression by SNP, indicating that cAMP plays a crucial role in the induction of HO-1. Incubation with cAMP-elevating agents, such as forskolin or isoproterenol resulted in up-regulation of the expression of HO-1. Forskolin-induced expression of HO-1 was inhibited by H89. Furthermore, propranolol, $\beta$-adrenoceptor blocker, inhibited the isoproterenol-induced HO-1 expression, supporting the importance of cAMP in the induction of HO-1 expression. Higenamine-S, but not higenamineR, enhanced the HO-1 expression induced by SNP. Furthermore, cellular toxicity induced by hydrogen peroxide was attenuated by the presence of SNP, which was further increased by the presence of ZnPPIX, HO-1 inhibitor. Collectively, these results strongly suggest that up-regulation of HO-1 expression in RAW 264.7 cells involves PKA signal pathway.

Procaryotic Expression of Porcine Acid-Labile Subunit of the 150-kDa Insulin-like Growth Factor Complex (미생물에서 돼지 150-kDa Insulin-Like Growth Factor Complex의 Acid-Labile Subunit 발현)

  • Lee, C. Young;Kang, Hye-Kyeong;Moon, Yang-Soo
    • Journal of Animal Science and Technology
    • /
    • 제50권2호
    • /
    • pp.177-184
    • /
    • 2008
  • Acid-labile subunit(ALS) is a 85-kDa glycosylated plasma protein which forms a 150-kDa ternary complex with 7.5-kDa insulin-like growth factor(IGF) and 40~45-kDa IGF-binding protein-3. In a previous study, the present authors prepared a porcine ALS(pALS) expression construct by inserting a pALS coding sequence into a plasmid vector following synthesis of the sequence by reverse transcription-polymerase chain reaction(RT-PCR). The expression construct, however, was subsequently found to have a mis-sense mutation at two bases of the pALS coding sequence which is presumed to have occurred through a PCR error. In the present study, the correct coding sequence was synthesized by the site-directed mutagenesis and inserted into the pET-28a(+) plasmid expression vector containing the His-tag sequence flanking the last codon of the insert DNA. After induction of the expression construct in E. coli BL21(DE3) cells, the resulting presumptive recombinant peptide was purified by the Ni-affinity chromatography. Upon SDS- PAGE, the affinity-purified peptide was resolved as a single band at a 66-kDa position which is consistent with the expected molecular mass of the presumptive recombinant pALS. Collectively, results indicate that a recombinant pALS peptide was successfully expressed and purified in the present study.

Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation

  • Ullah, Imran;Lee, Ran;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Hur, Tai-Young;Ock, Sun A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1837-1847
    • /
    • 2020
  • Objective: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. Methods: The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. Results: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media. Conclusion: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.

Induction of IFN-β through TLR-3- and RIG-I-Mediated Signaling Pathways in Canine Respiratory Epithelial Cells Infected with H3N2 Canine Influenza Virus

  • Park, Woo-Jung;Han, Sang-Hoon;Kim, Dong-Hwi;Song, Young-Jo;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Lee, Sang-Won;Choi, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.942-948
    • /
    • 2021
  • Canine influenza virus (CIV) induces acute respiratory disease in dogs. In this study, we aimed to determine the signaling pathways leading to the induction of IFN-β in a canine respiratory epithelial cell line (KU-CBE) infected with the H3N2 subtype of CIV. Small interfering RNAs (siRNAs) specific to pattern recognition receptors (PRRs) and transcription factors were used to block the IFN-β induction signals in H3N2 CIV-infected KU-CBE cells. Among the PRRs, only the TLR3 and RIG-I expression levels significantly (p < 0.001) increased in CIV-infected cells. Following transfection with siRNA specific to TLR3 (siTLR3) or RIG-I (siRIG-I), the mRNA expression levels of IFN-β significantly (p < 0.001) decreased, and the protein expression of IFN-β also decreased in infected cells. In addition, co-transfection with both siTLR3 and siRIG-I significantly reduced IRF3 (p < 0.001) and IFN-β (p < 0.001) mRNA levels. Moreover, the protein concentration of IFN-β was significantly (p < 0.01) lower in cells co-transfected with both siTLR3 and siRIG-I than in cells transfected with either siTLR3 or siRIG-I alone. Also, the antiviral protein MX1 was only expressed in KU-CBE cells infected with CIV or treated with IFN-β or IFN-α. Thus, we speculate that IFN-β further induces MX1 expression, which might suppress CIV replication. Taken together, these data indicate that TLR3 and RIG-I synergistically induce IFN-β expression via the activation of IRF3, and the produced IFN-β further induces the production of MX1, which would suppress CIV replication in CIV-infected cells.

Analysis of 5-aza-2'-deoxycytidine-induced Gene Expression in Lung Cancer Cell Lines (폐암 세포주에서 5-aza-2'-deoxycytidine 처치에 의해 발현되는 암항원 유전자 분석)

  • 김창수;이해영;김종인;장희경;박종욱;조성래
    • Journal of Chest Surgery
    • /
    • 제37권12호
    • /
    • pp.967-977
    • /
    • 2004
  • Background: DNA methylation is one of the important gene expression mechanisms of the cell. When cytosine of CpG dinucleotide in promotor is hypomethylated, expression of some genes that is controlled by this promoter is altered. In this study, the author investigated the effect of DNA demethylating agent, 5-aza-2'-deoxycytidine (ADC), on the expressions of cancer antigen genes, MHC and B7 in 4 lung cancer cell lines, NCIH1703, NCIH522, MRC-5, and A549. Material and Method: After treatment of cell lines, NCIH1703, NCIH522, MRC-5 and A549 with ADC (1 uM) for 48 hours, RT-PCR was performed by using the primers of MAGE, GAGE, NY-ESO-1, PSMA, CEA, and SCC antigen gene. In order to find the optimal ADC treatment condition for induction of cancer antigen, we studied the effect of ADC treatment time and dose on the cancer antigen gene expression. To know the effect of ADC on the expression of MHC or B7 and cell growth, cells were treated with 1 uM of ADC for 72 hours for FACS analysis or cells were treated with 0.2, 1 or 5 uM of ADC for 96 hours for cell counting. Result: After treatment of ADC (1 uM) for 48 hours, the expressions of MAGE, GAGE, NY-ESO-1, and PSMA genes increased in some cell lines. Among 6 MAGE isotypes tested, and gene expression of MAGE-1, -2, -3, -4 and -6 could be induced by ADC treatment. However, CEA gene expression did not change and SCC gene expression was decreased by ADC treatment. Gene expression was generally induced 24 - 28 hours after ADC treatment and expression of MAGE, GAGE, and NY-ESO-1 was maintained at least 14 days after ADC ADC teatment, and expression of MAGE, GAGE, and NY-ESO-1 was maintained at least 14 days after ADC teatment in ADC-Free medium. Most gene expression could be induced at 0.2 uM of ADC, but gene expression increased dependently on ADC treatment dose. The expression of MHC and B7 was not increased by ADC treatment in all four cell lines, and the growth rate of 4 cell lines decreased significantly with the increase of ADC concentrations. Conclusion: Treatment of lung cancer cell lines with ADC increases the gene expression MAGE, GAGE and NY-ESO-1 that are capable of induction of cytotoxic T lymphocyte response. We suggest that treatment with 1 uM of ADC for 48 hours and then culturing in ADC-free medium is optimal condition for induction of cancer antigen. However, ADC has no effect on MHC and B7 induction, additional modification for increase of expression of MHC, B7 and cytokine will be needed for production of efficient cancer cell vaccine.

Synthesis and High Expression of Chitin Deacetylase from Colletotrichum lindemuthianum in Pichia pastoris GS115

  • Kang, Lixin;Chen, Xiaomei;Zhai, Chao;Ma, Lixin
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권9호
    • /
    • pp.1202-1207
    • /
    • 2012
  • A gene, ClCDA, encoding chitin deacetylase from Colletotrichum lindemuthianum, was optimized according to the codon usage bias of Pichia pastoris and synthesized in vitro by overlap extension PCR. It was secretorily expressed in P. pastoris GS115 using the constitutive expression vector pHMB905A. The expression level reached the highest with 110 mg/l culture supernatant after 72 h of methanol induction, which comprised 77.27 U/mg chitin deacetylase activity. SDS-PAGE, mass spectrometry, and deglycosylation assays demonstrated that partial recombinant protein was glycosylated with an apparent molecular mass of 33 kDa. The amino acid sequences of recombinant proteins were confirmed by mass spectrometry.

Differentiation Inducing Effect of (+)-Catechin in Human Leukemia HL60 Cells ((+)-Catechin에 의한 백혈병 세포 HL-60의 분화 유도효과)

  • 이수진;염윤기;안형수;안령미;이세윤
    • Toxicological Research
    • /
    • 제15권1호
    • /
    • pp.19-25
    • /
    • 1999
  • (+)-Catechin inhibited the growth and induced the differentiation of HL-60 human leukimia cells. The degree of a differentiation by (+)-catechin during the differentiation, the expression assay, To understand the molecular mechanism of (+)-catechin during the differentiation, the expression level of oncogenes was detected by Northern blot analysis. c-Myc mRNA level was reduced after treatment with (+)-Catechin (10-4), however, the expression of c-jun was increased with a concentration dependent manner in HL-60 cells. These results showed that the differentiation and antiproliferation of HL-60 cells against (+)-Catechin was related to the reduction of c-myc and the induction of c-jun expression.

  • PDF

A Co-expression Network of Drought Stress-related Genes in Chinese Cabbage

  • Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • 제35권2호
    • /
    • pp.243-251
    • /
    • 2017
  • Plants have evolved to adapt to abiotic stresses, such as salt, cold, and drought stress. In this study, we conducted an in-depth analysis of drought resistance mechanisms by constructing a gene co-expression network in Chinese cabbage (Brassica rapa ssp. pekinensis L.). This drought stress co-expression network has 1,560 nodes, 4,731 edges, and 79 connected components. Based on genes that showed significant co-expression in the network, drought tolerance was associated with the induction of reactive oxygen species removal by raffinose family oligosaccharides and inositol metabolism. This network could be a useful tool for predicting the functions of genes involved in drought stress resistance in Chinese cabbage.

Effects of Natural Extracts on COX-1 and COX-2 mRNA Expression on UVB-induced Skin Inflammation in C57BL/6 Mouse

  • Ahn, Ryoung-Me
    • Journal of Environmental Health Sciences
    • /
    • 제32권6호
    • /
    • pp.566-570
    • /
    • 2006
  • Exposure to ultraviolet B(UVB) radiation causes skin inflammation such as pigmentation and the induction of cyclooxygenase-2(COX-2) gene expression. In this study, we investigated the effect of natural extracts from Tea, EGb 761 and Korean red ginseng(KRG), on the pigmentation and expression of COX-1 and COX-2 mRNA in UVB-irradiated C57BL/6 mice. Before UVB irradiation, the skin color was significantly showed the lightening effect by topical application of natural compounds (p<.05). In the case of UVB irradiated mice, we observed a decrease in pigmentation by compounds (p<.05). In irradiated skin, COX-1 mRNA expression is not changed following UVB irradiation, but COX-2 gene increases. Also, natural compounds lowered mRNA levels of COX-2. Therefore, these results suggest that COX-2 mRNA increases by UVB irradiation. Also, Tea, EGb 761 and KRG as a topical application may inhibit skin pigmentation and modulate COX-2 mRNA level.