• 제목/요약/키워드: Induction expression

검색결과 2,151건 처리시간 0.022초

종양 세포 용해액에 따른 수지상세포 유도 항원 특이 면역반응 차이의 기전 연구 (Mechanism of Differential Ag-specific Immune Induction by Different Tumor Cell Lysate Pulsed DC)

  • 이강은;손혜진;김명주;백소영;이현아
    • IMMUNE NETWORK
    • /
    • 제6권3호
    • /
    • pp.145-153
    • /
    • 2006
  • Background: Tumor cell lysate has been considered as a preferential antigen source for the therapeutic dendritic cell pulsing. Our experiences with in vivo study with animal tumor model indicate the tumor cell lysate dependent differential effect of DC therapy. Our previous data show that MC38 lysate pulsed-DC induced stronger ag-specific immunity than CT26 lysate pulsed-DC in vitro. In this study we tried to reveal the mechanism for differential induction of ag-specific immunity of different colon cancer cell lysate pulsed-DCs. Methods: MC38 and CT26 cell lines were prepared as lysate by freezing-thawing procedure. Tumor cell antigenicity was confirmed by detecting the surface expression of MHC I/II & B7.1/2 molecules. IL-10, IL-12 and TGF-beta in the tumor cell lysate were detected by ELISA and the presence of heat shock proteins were analysed by western blotting. Results: The secretion of IL-10, a immune-inhibitory cytokine was about 470% higher in CT26 lysate than in MC38. Hsp 70 was detected only in the MC38 lysate but not in the CT26. On the other hand, Hsp 60 and 90 expression were not different in two colon cancer cell lysates. Conclusion: In two different colon cancer cell lysate, immune inhibitory IL-10 (higher in CT26) and Hsp70 (MC38 superiority) were differentially expressed. These data indicate that higher agspecific immunity induction by MC38 lysate pulsed-DC may due to the expression of hsp70 and lower secretion of IL-10, a immune-inhibitory cytokine than CT26 lysate. The significance of other cytokine and the surface marker expression will be discussed.

사람 치은 섬유아세포에서의 Tannerella forsythia 전세균, 막단백질, 당지질에 의한 염증성 사이토카인 발현 (Pro-inflammatory cytokine expression in human gingival fibroblasts by Tannerella forsythia whole bacteria, membrane proteins, and lipopolysaccharide)

  • 김정은;이성훈;최봉규;구기태;김태일;이용무;구영;정종평;류인철
    • Journal of Periodontal and Implant Science
    • /
    • 제38권3호
    • /
    • pp.543-550
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate induction of cytokine expression in human gingival fibroblasts (HGFs) by whole cell and the components of T. forsythia. Material and Methods: After HGFs were treated with lipopolysaccharide (LPS), membrane protein isolated from T. forsythia or culture media of T. forsythia, the induction of interleukin (IL)-1, IL-6 and IL-8 was examined with real-time PCR and ELISA. Their induction ability of cytokines was compared with whole bacteria. Result: The expression of IL-6 and IL-8 was significantly induced in HGFs by whole bacteria and membrane protein. The expression of IL-$1{\beta}$ was induced by membrane protein of T. forsythia, not by whole bacteria. LPS and condition media of T. forsythia slightly activated HGFs. Conclusion: The membrane protein of T. forsythia could be one of virulence factors.

Potentiation of COX-2 Induction by C2-ceramide, a Potential Cell Death Marker

  • Kim, Sang-Geon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 춘계학술대회 논문집
    • /
    • pp.13-14
    • /
    • 2003
  • Ceramide, a potential cell death marker formed by sphingomyelinase, is involved in the expression of cyclooxygenase-2 (COX-2). This study examines the effect of C2-ceramide (C2), a cell-permeable ceramide analog, on the LPS-inducible COX-2 expression and signaling pathways. C2 did not induce COX-2, but potentiated LPS-inducible COX-2 expression in Raw264.7 cells, whereas dihydro-C2 was inactive.(omitted)

  • PDF

Differential Expression and Stability of Endogenous Nuclear Factor E2-related Factor 2 (Nrf2) by Natural Chemopreventive Compounds in HepG2 Human Hepatoma Cells

  • Jeong, Woo-Sik;Keum, Young-Sam;Chen, Chi;Jain, Mohit R.;Shen, Guoxiang;Kim, Jung-Hwan;Li, Wenge;Kong, Ah-Ng Tony
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.167-176
    • /
    • 2005
  • Nuclear factor-E2-related factor 2 (Nrf2) is known as a key regulator of ARE-mediated gene expression and the induction of Phase II detoxifying enzymes and antioxidant enzymes, which is also a common property of many chemopreventive agents. In the present study, we investigated the regulatory role of different chemopreventive agents including sulforaphane (SUL), allyl isothiocyanate (AITC), indole-3-carbinol (I3C), and parthenolide (PTL), in the expression and degradation of Nrf2 and the induction of the antioxidant enzyme HO-1. SUL strongly induced Nrf2 protein expression and ARE-mediated transcription activation, retarded degradation of Nrf2 through inhibiting Keap1, and thereby activating the transcriptional expression of HO-1. AITC was also a potent inducer of Nrf2 protein expression, ARE-reporter gene and HO-1 but had little effect on delaying the degradation of Nrf2 protein. Although PTL and I3C could induce ARE reporter gene expression and Nrf2 to some extent, they were not as potent as SUL and AITC. However, PTL dramatically induced the HO-1 expression, which was comparable to SUL, while I3C had no effect. In addition, when treated with SUL and PTL, inhibition of proteasome by MG132 did not cause additional accumulation of Nrf2, suggesting the involvement of other degradation mechanism(s) in the presence of these compounds such as SUL and PTL. In summary, the results of our current study indicated that different chemopreventive compounds have different regulatory properties on the accumulation and degradation of Nrf2 as well as the induction of cellular antioxidant enzyme HO-1.

High-level Production of Recombinant Human IFN-$\alpha2a$ with Co-expression of $tRNA^{Arg(AFF/AGA)}$ in High-cell-density Cultures of Escherichia coli

  • Shin, Chul-Soo;Hong, Min-Seon;Shin, Hang-Chel;Lee, Jeewon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권4호
    • /
    • pp.301-305
    • /
    • 2001
  • The co-expression of the arg U gene in a double-vector expression system of recombi-nant Escherichia coli BL22(DE3)[pET-IEN2a+pAC-argU] significantly enhanced the production level of reconminant human interferon -$\alpha$2a(rhIFN-$\alpha$2a) in high cell density cultures, compared to a recombinant E. coli culture containing only the single expression vector, pET-IEN2a. The dry cell mass concentration increased to almost 100 g/L, and more than 4 g/L of rhIFN-$\alpha$2a was accumu-lated in the culture broth. Evidently, the synthesis of rhIFN-$\alpha$2a was strongly dependent on the pre-induction growtih rate and more efficient at a higher specific growth rate. The additional sup-ply of tRN $A^{Arg(AGG/AGA)}$ enhanced the expression level of the rhIFN-$\alpha$2a gene in the early stage of the post-induction phase, yet thereafter the specific production rate of rhIFN-$\alpha$2a rapidly de-creased due to severe segregational instability of plasmid vector pET-IEN2a. It would appear that the plasmid instability with only occurred to pET-IEN2a in the double vector system, was re-lated to the effect of translational stress due to the over expression of rhIFN-$\alpha$2a.

  • PDF

Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells

  • Park, Jin-Ah;Na, Han-Heom;Jin, Hyeon-Ok;Kim, Keun-Cheol
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.884-892
    • /
    • 2019
  • Piperlongumine (PL), a natural alkaloid compound isolated from long pepper (Piper longum), can selectively kill cancer cells, but not normal cells, by accumulation of reactive oxygen species (ROS). The objective of this study was to investigate functional roles of expression of SETDB1 and FosB during PL treatment in MCF7 breast cancer cells. PL downregulates SETDB1 expression, and decreased SETDB1 expression enhanced caspase 9 dependent-PARP cleavage during PL-induced cell death. PL treatment generated ROS. ROS inhibitor NAC (N-acetyl cysteine) recovered SETDB1 expression decreased by PL. Decreased SETDB1 expression induced transcriptional activity of FosB during PL treatment. PARP cleavage and positive annexin V level were increased during PL treatment with FosB overexpression whereas PARP cleavage and positive annexin V level were decreased during PL treatment with siFosB transfection, implying that FosB might be a pro-apoptotic protein for induction of cell death in PL-treated MCF7 breast cancer cells. PL induced cell death in A549 lung cancer cells, but molecular changes involved in the induction of these cell deaths might be different. These results suggest that SETDB1 mediated FosB expression may induce cell death in PL-treated MCF7 breast cancer cells.

G protein-coupled estrogen receptor-1 agonist induces chemotherapeutic effect via ER stress signaling in gastric cancer

  • Lee, Seon-Jin;Kim, Tae Woo;Park, Gyeong Lim;Hwang, Yo Sep;Cho, Hee Jun;Kim, Jong-Tae;Lee, Hee Gu
    • BMB Reports
    • /
    • 제52권11호
    • /
    • pp.647-652
    • /
    • 2019
  • G protein-coupled estrogen receptor (GPER) is known to play an important role in hormone-associated cancers. G-1, a novel synthetic GPER agonist, has been reported to exhibit anti-carcinogenic properties. However, the chemotherapeutic mechanism of GPER is yet unclear. Here, we evaluated GPER expression in human gastric cancer tissues and cells. We found that G-1 treatment attenuates GPER expression in gastric cancer. GPER expression increased G-1-induced antitumor effects in mouse xenograft model. We analyzed the effects of knockdown/overexpression of GPER on G-1-induced cell death in cancer cells. Increased GPER expression in human gastric cancer cells increased G-1-induced cell death via increased levels of cleaved caspase-3, -9, and cleaved poly ADP-ribose polymerase. Interestingly, during G-1-induced cell death, GPER mRNA and protein expression was attenuated and associated with ER stress-induced expression of PERK, ATF-4, GRP-78, and CHOP. Furthermore, PERK-dependent induction of ER stress activation increased G-1-induced cell death, whereas PERK silencing decreased cell death and increased drug sensitivity. Taken together, the data suggest that the induction of ER stress via GPER expression may increase G-1-induced cell death in gastric cancer cells. These results may contribute to a new paradigm shift in gastric cancer therapy.

CCAAT/enhancer-binding protein beta (C/EBPβ) is an important mediator of 1,25 dihydroxyvitamin D3 (1,25D3)-induced receptor activator of nuclear factor kappa-B ligand (RANKL) expression in osteoblasts

  • Jo, Sungsin;Lee, Yun Young;Han, Jinil;Lee, Young Lim;Yoon, Subin;Lee, Jaehyun;Oh, Younseo;Han, Joong-Soo;Sung, Il-Hoon;Park, Ye-Soo;Kim, Tae-Hwan
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.391-396
    • /
    • 2019
  • Receptor activator of nuclear factor kappa B ligand (RANKL) expression in osteoblasts is regulated by 1,25-dihydroxyvitamin D3 (1,25D3). CCAAT/enhancer-binding protein beta ($C/EBP{\beta}$) has been proposed to function as a transcription factor and upregulate RANKL expression, but it is still uncertain how $C/EBP{\beta}$ is involved in 1,25D3-induced RANKL expression of osteoblasts. 1,25D3 stimulation increased the expression of RANKL and $C/EBP{\beta}$ genes in osteoblasts and enhanced phosphorylation and stability of these proteins. Moreover, induction of RANKL expression by 1,25D3 in osteoblasts was downregulated upon knockdown of $C/EBP{\beta}$. In contrast, $C/EBP{\beta}$ overexpression directly upregulated RANKL promoter activity and exhibited a synergistic effect on 1,25D3-induced RANKL expression. In particular, 1,25D3 treatment of osteoblasts increased $C/EBP{\beta}$ protein binding to the RANKL promoter. In conclusion, $C/EBP{\beta}$ is required for induction of RANKL by 1,25D3.

사람 폐 섬유아 세포에서 Brunfelsia grandiflora 에탄올 추출물이 Autophagy에 미치는 영향 (The Effect of Brunfelsia grandiflora Ethanol Extract on the Induction of Autophagy in Human Lung Fibroblasts)

  • 남향;김문무
    • 생명과학회지
    • /
    • 제24권8호
    • /
    • pp.837-842
    • /
    • 2014
  • 이 연구의 목적은 사람 폐 섬유아세포인 IMR 90 에서 Brunfelsia grandiflora 에탄올 추출물(BGEE)이 SIRT1 및 p53 활성화를 통해 autophagy의 유도에 대한 효과를 조사한 것이다. BGEE는 $5{\mu}g/ml$ 이상의 농도에서 IMR 90 세포에서 세포독성을 나타내었다. 본 연구에서 처음으로 BGEE가 autophagy를 유도 하는 것이 발견되었다. 또한, BGEE는 $2.5{\mu}g/ml$ 이하에서 Beclin-1 및 $5{\mu}g/ml$ 이상에서 Atg7 의 활성화가 autophagy의 유도에 관여함을 확인하였다. 더욱이 BGEE는 autophagy와 관련된 단백질 발현을 조절하였는데 p53 및 p-p53 단백질 발현이 세포독성이 없는 농도의 BGEE존재하에서 감소되었다. 하였다. 반면에, SIRT1의 발현수준은 세포독성이 없는 농도의 BGEE로 처리된 IMR 90 세포에서 증가되었다. 더욱이 BGEE로 처리된 사람 페 섬유아세포에서 노화 마커의 지표인 SA-${\beta}$-gal staning이 감소되는 것이 관찰되었다. 이상의 발견들은 BGEE는 사람 폐 섬유아세포에서 p53 및 SIRT1의 조절을 통하여 autophagy 및 항노화 유발을 촉진 시키는 것을 시사하고 있다.

Heme Oxygenase-1(HO-1) induction by UVB(290-320nm) radiation in ICR mice

  • Choi, Wook-Hee;Kim, Tae-Hwan;Ahn, Ryoung-Me
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 가을학술대회
    • /
    • pp.166-168
    • /
    • 2005
  • The induction of heme oxygenase-1(HO-1) by ultraviolet(UV) radiation provides a protective defense against oxidative stress, and has been well demonstrated in UVA-irradiated skin, but not UVB. In this study in mice, we show that the UVB(290-320nm) radiation can be attributed to the induction of cutaneous heme oxygenase-1. The expression of HO-1 mRNA was assessed in vivo by the reverse transcription-polymerase chain reaction (RT-PCR) analysis, and HO-1 enzyme activity was measured in microsomal preparation from irradiated mice. The mRNA level of HO-1 increases in liver and skin from 24h to 72h after UVB($3KJ/m^3$) radiation. The results of gene expression were same pattern of HO enzyme activity in skin, but not in liver. HO-1 mRNA in liver resulted in a progressive increase to 96h after UVB radiation, but HO activity in liver increased to 48h. This finding indicates that UVB radiation is an important inducer of HO-1 and increases in HO activity may protect tissues directly or indirectly from oxidative stress.

  • PDF