• Title/Summary/Keyword: Induction cooking

Search Result 29, Processing Time 0.029 seconds

Multiple-Load Induction Cooking Application with Three-Leg Inverter Configuration

  • Sharath Kumar, P.;Vishwanathan, N.;Murthy, Bhagwan K.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1392-1401
    • /
    • 2015
  • Inverter configurations for multiple-load induction cooking applications need development. Inverter configurations for induction cooking applications are used in home appliances based on single coil inverters. For multiple-load configurations, multiple coils are used. They require proper inverters, which provide independent control for each load and have fewer components. This paper presents a three-leg inverter configuration for three load induction cooking applications. Each induction coil powers one induction cooking load. This configuration operates with constant switching frequency and powers individual loads. The output power of the required load is controlled with a phase-shift control technique. This configuration is simulated and experimentally tested with three induction loads. The simulation and experimental results are in good agreement. This configuration can be extended to more loads.

Development of Functional Auxiliary Device to Improve Induction Safety (인덕션 안전성 향상을 위한 기능보조 디바이스 개발)

  • Kim, Min-Kyoung;Seo, Dong-Min;Yoo, Dong-Hun;Yoo, Jin-Young;Jeong, Seong-Ho;Choi, Heon-Soo;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1263-1270
    • /
    • 2021
  • Recently, in the food culture life, the trend of consumers cooking is changing, and the use rate of induction cookware is increasing. Therefore, in this study, we propose the development of a functional auxiliary device to improve the safety of induction cookware to improve the convenience of cooking according to the increase in the cooking population. The proposed device is linked with IoT through the app. Through the app, the device can control the induction heating power adjustment and time reservation. In addition, an ultrasonic sensor is used to prevent the container from overflowing during cooking, and the user can safely use induction through the fine dust sensor. The implemented device conducts research assuming the actual cooking situation. Finally, it was confirmed that the user's fatigue was reduced during cooking through the device and the user's safety was improved in emergency situations such as overcooking or overflowing of water.

Efficient Cooling Method for a Cu Coil in an Induction Cooker by Using an Insulation Sheet

  • Kwon, Jong-Han;Nam, Yoon-Jae;Shin, K.H.;Lim, S.H.
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • A silica aerogel sheet with a very low thermal conductivity is used to suppress the temperature increase of the Cu coil in an induction cooker by reducing the heat flow from the heat source (cooking pot). It is found that the temperature of the Cu coil is reduced significantly by the insertion of an insulation sheet between the heat source and the Cu coil, demonstrating the effectiveness of the insulation sheet in the suppression of the heat flow between the cooking pot and the coil. Furthermore, the temperature of the cooking pot increases more rapidly with the use of the insulation sheet, allowing for an increased efficiency of the induction cooker.

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.

A Study on the Parameter Optimization of Inverter for Induction Heating Cooking Appliance (유도가열 조리기기용 인버터 파라미터 최적화에 관한 연구)

  • Kang, Byung-Kwan;Lee, Se-Min;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • With the advent of power semiconductor switching devices, power electronics relating to high frequency electromagnetic eddy current based induction heating technology have become more suitable and acceptable. This paper presents high-frequency induction heating cooking appliance circuit based on the zero current switching-PWM single ended push-pull(ZCS-PWM SEPP) resonant inverter added AC-DC converter. This inverter uses pulse-width-modulation(PWM) control method with active auxiliary quasi-resonant lossless inductor snubbers and a switched capacitor. To improved the transient performance, the PI controller is applied for this system. For the systematic parameter optimization of the PI controller, the gradient-based optimization algorithm is applied. The performance of optimized parameters is evaluated using simulation and experimental test. These results show that the proposed systematic optimal tuning method improve the transient performances of this system.

Half-Bridge Series Resonant Inverter for Induction Cooking Applications with Load-Adaptive PFM Control Strategy

  • Kwon, Young-Sup;Lee, Byoung-Kuk;Yoo, Sang-Bong;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1018-1023
    • /
    • 1998
  • This paper presents an effective control scheme incorporated in the voltage-fed half-bridge series resonant inverter for induction heating applications, which is based upon a load-adaptive tuned frequency tracking control strategy using PLL(Phase Locked Loop) and its peripheral control circuit. The proposed control strategy ensures a stable operation characteristics of overall inverter system and ZVS(Zero Voltage Switching0 operation in spite of sensitive load parameters variation as well as power regulation, specially in the non-magnetic heating loads. The simulation results and the performance characteristics in the steady-state are shown as compared with the experimental results for a prototype induction cooking system rated at 1.2kW.

  • PDF

Design of Control System for All-Metal Domestic Induction Heating Considering Temperature and Quick-Response (워킹코일 온도 및 제어 속응성을 고려한 All-Metal Domestic Induction Heating 제어 시스템 설계)

  • Park, Sang-Min;Jang, Eun-Su;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • In this paper, an all-metal domestic induction heating (IH) system that can quickly identify ferromagnetic and non-ferromagnetic pots considering temperature changes in the working coil is designed. Load modeling is performed after analyzing the parameters of the pot material and the central misalignment of the working coil. To improve the performance and stability of the all-metal IH cooking heater, a power curve-fitting model is used to design a control system that quickly responds to load parameter fluctuations. In addition, a power control algorithm is established to compensate for the reference value by reflecting the increase in working coil temperature during heating of the non-ferromagnetic pot. The validity of the proposed control algorithm for the all-metal IH is verified by experiments using a 3.2 kW all-metal IH cooking heater.

The Next Generation Apartment Model Far Infrared Rays Radiant Heater using Quasi-Resonant Soft Switching PWM Inverter

  • Kwon, Soon-Kurl;Mun, Sang-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.11
    • /
    • pp.15-22
    • /
    • 2008
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction heated type far infrared rays radiant heating appliance using the voltage-fed quasi-resonant ZVS-PWM high frequency inverter using IGBTs for food cooking and processing which operates under a constant frequency variable power regulation scheme. This power electronic appliance with soft switching high frequency inverter using IGBTs has attracted special interest from some advantageous view points of safety, cleanliness, compactness and rapid temperature response, which is more suitable for consumer power electronics applications.

A Study on the Temperature-Diffusion Analysis of Induction Heating Jar (Induction Heating Jar의 온도분포 해석에 관한 연구)

  • Lee, Sang-Ho;Oh, Hong-Seok;Lee, Bong-Seob;Lee, Young-Mee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.79-82
    • /
    • 2002
  • Induction heating is widely used in today's industry, in operations such as metal hardening, preheating for forging operations, melting or cooking. In this paper, it was presented the magneto-thermal analysis of an induction heating jar(IH-JAR) with the material value of the stainless and the aluminum for efficient design. The magnetic field intensity inside the axisymmetric shaped cooker was analyzed using three-dimensional axisymmetric finite element method(FEM) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the jar. The heat was calculated using the heat source and heating equation. Also, it was represented the temperature characteristics of the IH-JAR according to time and relative permeability in stainless parts and in aluminum parts.

  • PDF

A Study on the Improvement of Performance and Stability of Induction Heating System (유도 가열 시스템의 성능과 안정성 향상에 관한 연구)

  • Gwon, Yeong-Seop;Yu, Sang-Bong;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.417-425
    • /
    • 1999
  • This paper presents an effective control scheme with the voltage-fed half-bridge series resonant inverter for induction heating system, which is based upon a load-adaptive tuned frequency tracking control strategy using PLL(Phase Locked Loop) and its peripheral control circuits. The proposed control strategy ensures a stable operation characteristics of overall inverter system and ZVS(Zero Voltage Switching) irrespective of sensitive load parameter variations, specially in the non-magnetic materials as well as power regulation. The detail operation principle and the characteristics of inverter system with the proposed control scheme are described and its validity is verified by the simulation and the experimental results for a prototype induction cooking system rated at 1.2kW.

  • PDF