• Title/Summary/Keyword: Induction coil

Search Result 244, Processing Time 0.022 seconds

An Optimization of Inductive Coil Design for Thixoforging and Its Experimental Study (반용융 단조를 위한 유도가열용 코일설계의 최적화 및 실험적 연구)

  • Jung, Hong-Kyu;Kim, Nam-Seok;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 1999
  • The reheating of the billet in the semi-solid state as quickly and homogeneously as possible is one of the most important aspects. From this point of view, an optimal design of the induction coil is necessary. The objective of inductive coil designsi a uniform induction heating over the length of the billet. The effect of coil length, diameter, the gap between coil surface and billet and axial position of the billet on temperature distribution of billet has been investigated. These design parameters have an important effectiveness on the electro-magnetic field. Therefore, in this study an optimal coil design to minimize electromagnetic ed effect will be proposed by defining the relationship between billet length and coil length. In particular, key point in induction heating process is focussed on optimizing the coil design with regard to the size of the heating billet and the frequency of induction heating system. After demonstrating the suitability of an optimal coil design through the FEM simulation of the induction heating process, the results of the coil design are also applied to the reheating process to obtain a fine globular microstructure. Its considered that the reheating conditions of aluminum alloys for thixoforging and a new CAE model of the induction heating process are very useful for thixoforging practitioners including induction heating ones.

  • PDF

A Study on the Influence of Induction Coil Movement Speed and Frequency on Induction Hardening of SCM440 Steel (SCM440 강의 유도 경화에 미치는 유도코일 이동속도 및 주파수의 영향에 관한 연구)

  • Ki-Woo Nam;Ki-Hang Shin;Byoung-Chul Choi;Gum-Hwa Lee;Jong-Kyu Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.813-823
    • /
    • 2023
  • In this study, microstructure, hardening layer hardness, and case depth were evaluated after induction hardening(IH) of base metal specimen(BM) treated with annealing and quenching-tempering specimen(QT) treated with quenching and tempering. The microstructure after IH was significantly influenced by the microstructure before IH and the induction coil heating movement speed, but the effect of the induction frequency was very small. The hardness of the hardened layer at an induction coil heating movement speed of 15 mm/s or less was more influenced by the microstructure before IH than the induction coil travel speed and induction frequency. The induction coil travel speed has the significantly effect on the case depth, the induction frequency has effect and the microstructure before IH has a small effect.

Optimization of Induction Coil Design for Reheating in Thixoforming Process (Thixoforming을 위한 재가열용 유도코일 설계의 최적화)

  • 김남석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.165-168
    • /
    • 1999
  • The coil design of induction heating systems and their optimization are of paramount importance for semi-solid processing(SSP) The authors of this paper present the coil design and optimization of a 60 Hz induction heating system for ALTHIX 86S (Al-6%_Si-3%Cu-0.3%Mg) alloy. An objective function on the basis of the optimization process for the coil design is proposed by introducing an optimization technique. Finally the results of the optimal coil design are also applied to the induction heating process to obtain a fine globular microstructure. The proposed new objective function based on the computational techniques would contribute to obtaining the thixoformed components with good mechanical properties and reducing lead time.

  • PDF

Coil Design of Pulse Induction Metal Detector (펄스 유도 방식의 금속탐지기 코일 설계)

  • Jung, Byung-Min;Chang, Yu-Shin;Han, Seung-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.389-396
    • /
    • 2015
  • A coil design of pulse induction metal detectors has been described. The search coil was demonstrated by using the wire with the diameter of 0.3 mm, 0.5 mm and 1.0 mm and the dielectric plate with the $30cm{\times}30cm$ and $35cm{\times}35cm$, the time constant and the currents of the coil as the variation of the coil size and the number of coil turns was characterized. The coil parameters like the resistance, the inductance and the time constants as the variation of the diameter of the wire, the coil size and the number of coil turns were compared and analysed through the calculation and the measurement. In addition, investigating the coil currents as the variation of the input pulse width, the coil design of pulse induction metal detectors has been discussed.

Analysis of the Induction Heating for Moving Inductor Coil

  • Yun J.O.;Yang Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1217-1223
    • /
    • 2006
  • Induction heating is a process that is accompanied with magnetic and thermal situation. This paper presents a simulation of a magneto-thermal coupled problem of an induction heating process for moving inductor coil. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. As the inductor coil moves in the process, solution domains corresponding to inductor changes into those of the air, and the solution domains of air change into those of the inductor. For these reasons, modeling of induction heating process is very difficult with general purpose commercial programs. In this paper, induction heating process for moving coil was simulated with the concept of traveling the position of the heating planes. Finite element program was developed and finite element results were compared with the experimental results.

Efficient Cooling Method for a Cu Coil in an Induction Cooker by Using an Insulation Sheet

  • Kwon, Jong-Han;Nam, Yoon-Jae;Shin, K.H.;Lim, S.H.
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • A silica aerogel sheet with a very low thermal conductivity is used to suppress the temperature increase of the Cu coil in an induction cooker by reducing the heat flow from the heat source (cooking pot). It is found that the temperature of the Cu coil is reduced significantly by the insertion of an insulation sheet between the heat source and the Cu coil, demonstrating the effectiveness of the insulation sheet in the suppression of the heat flow between the cooking pot and the coil. Furthermore, the temperature of the cooking pot increases more rapidly with the use of the insulation sheet, allowing for an increased efficiency of the induction cooker.

Empirical Characterization of an Air-cored Induction Coil Sensor using Constructional Parameters (Air-cored induction 코일 센서의 실험 기반 고주파 특성 모델링에 대한 연구)

  • Lim, Han-Sang;Kim, In-Joo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This paper presents empirical equations indicating the high frequency performance characteristics of air-cored induction coil sensors with their constructional parameters. An air-cored induction coil sensor is widely used due to good linearity at low frequency ranges but the sensor has weakness of relatively low sensitivity to the magnetic field. At high frequency ranges, the sensitivity can be dramatically increased, largely depending on the frequency of the injected field, and this property can be a great asset to some electromagnetic inspections, since they utilize the interrogating current with a fixed frequency. The application of this property of the coil sensor requires the estimation of its high frequency performance. We made experiments on the frequency responses of the coil sensors under diverse constructional conditions and, on the basis of the experimental results, the high frequency performance, such as the resonant frequency and the sensitivity at the frequency, was estimated, as a function of the constructional parameters of the coil sensor. The good agreements between experimental and estimated data were reported.

Design of Induction Heating Coil for Automatic Hull Forming System

  • Ryu, Hyun-su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.360-366
    • /
    • 2018
  • In shipyards hull forming is performed by the line heating method using a gas torch and by cold treatment using a roll-press. However, this forming process has some issues, such as difficulties in controlling and accurately estimating the amount of the heat input, as well as a harsh working environment due to exposure to loud noises and air pollution. The induction heating method, which is introduced in this paper, exhibits good control and allows for the estimation of precise heat input. Also, workers can carry out the induction heating in a comfortable working environment. In this research, the induction heating simulation, which consists of electro-magnetic, heat transfer and thermal elasto-plastic analysis, was developed and modified through induction heating experiments. Finally, the effective heating coil was designed for the automatic hull forming system based on the results of induction heating simulation. For the purposes of a future study, if an algorithm to obtain optimal working conditions is developed, automatic systems for hull forming can then be constructed.

Design and Sensitivity Analysis of Design Factors for Induction Heating System (수치해석을 통한 유도가열 코일의 설계 및 설계인자의 민감도 해석)

  • Oh, Dong-Wook;Kim, Tae Hoon;Do, Kyu Hyung;Park, Jang Min;Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.233-240
    • /
    • 2013
  • Rapid and homogeneous heating in heat treatment has been a challenging engineering issue throughout a heating temperature over $1,000^{\circ}C$. Induction heating has been widely used in field of heat treatment compared with conventional heating system. Advantages in homogeneous heating, simple fabrication, and repeatable use can be efficiently made with the induction heater. In this paper, numerical analysis of an induction coil system for heat flux gauge heating is performed. The effect of configuration on the heating performance was considered in various cases of the coil radius, distance between the winding, relative height difference between the heat flux gauge and the coil, and the applied current frequency. Temperature distribution within the heat flux gauge at frequency-steady state was calculated with a finite element method. Sensitivity analysis was also performed and the relative importance of 2 key parameters; coil radius, distance between the winding, were taken as main contributors for induction heating.

A 64 kHz Frequency Control Using BRM for Induction Heating

  • Jamjan, K.;Thepsatorn, P.;Charean, A.;Tipsuwanporn, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1857-1861
    • /
    • 2003
  • This paper proposes a method for controlling energy distribution to 1 phase induction heating coil by using the Binary Rate Modulation (BRM) Technique. Such method provides proper frequency to the heating coil's requirement by control the frequency at the resonance point, that is, 64-kHZ frequency band. System design are classified to 2 parts. The first part determines main frequency , and the second part generates the frequency from the 8-bit BRM derived from IC no. PAL22V10 in order to control the frequency for Full-bridge connected inverter when supplying the energy required by the 1 phase induction heating coil. Therefore, efficiency of the energy supply can be increate.

  • PDF