• Title/Summary/Keyword: Induction Brazing

Search Result 18, Processing Time 0.023 seconds

A Study on Rapid Mold Heating System using High-Frequency Induction Heating (고주파 유도가열을 사용한 급속 금형가열에 관한 연구)

  • Jeong, Hui-Tack;Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

Injection Molding for a Ultra Thin-Wall Part using Induction Heating (고주파 유도가열을 사용한 초박육 플라스틱 제품의 사출성형)

  • Park, Keun;Choi, Sun;Lee, Se-Jik;Kim, Young-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.481-487
    • /
    • 2008
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation of induction heating in order to rapidly raise the mold temperature. It is observed that the mold surface temperature is raised up to $200^{\circ}C$ in 2 seconds. This induction heating is applied to injection molding of a flexspline for a plastic harmonic drive, which has difficulty in cavity filling because its minimum thickness is only 0.35 mm. The induction heating is then successfully implemented on this ultra-thin wall molding by raising the mold surface temperature around the glass-transition temperature of the molding material.

Effects of Drawing Parameters on Mechanical Properties in High Frequency Induction Welded Tubes of BAS111 Alloy for Heat-exchangers (열교환기용 BAS111합금 고주파유도용접관에서 인발조건이 기계적 특성에 미치는 영향)

  • 국진선;김낙찬;송중근;전동태
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.65-72
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS111 welded tubes. The BAS111 aluminium alloy tubes with 25.4mm in external diameter and 1.5mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle 6.8$^{\circ}$ and power input 50㎾. With increasing the reduction of area (1.6, 5.8, 11.5, 14.2, 18.5, 22.5%) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction was estimated about 15% because of the work hardening of welds.

Diamond Film Synthesis by MWCVD and Its Application to Cutting Tools (MWCVD에 의한 다이아몬드 필름의 합성과 절삭 공구에의 응용)

  • 서문규;김윤수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.979-985
    • /
    • 1993
  • Diamond films were synthesized using CH4-H2-Ar mixture gases by MWCVD, and cutting ability was tested after brazing them onto WC tools. Growth rates were in the range of 0.5~10${\mu}{\textrm}{m}$/hr depending on the deposition conditions, and diamond films with thickness of 100~300${\mu}{\textrm}{m}$ were obtained. Diamond tools brazed by RF induction method showed an enhanced cutting ability in the cutting test of Si single crystal rod.

  • PDF

Operating Characteristics of Advanced 500W class Anode-supported Flat Tubular SOFC stack in KIER (500W 급 연료극 지지체 평관형 고체산화물연료전지 스택의 운전 특성)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2007.11a
    • /
    • pp.193-198
    • /
    • 2007
  • KIER has been developing the anode supported flat tubular SOFC stack for the intermediate temperature $(700{\sim}800^{\circ}C)$ operation. for this purpose, we have first fabricated anode supported flat tubular cells by the optimization between the current collecting method and the induction brazing process. After that we designed the compact fuel & air manifold by adopting the simulation technique to uniformly supply fuel & air gas and the unique seal & insulation method to make the more compact stack. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90cm^2$ of connected in series with 12 modules, in which one module consists of two cells connected in parallel. The performance of stack in 3 % humidified $H_2$ and air at $800^{\circ}C$ shows maximum power of 507 W. Through these experiments, we obtained basic & advanced technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular SOFC stack in KIER.

  • PDF

Effects of Drawing Parameters on Mechanical Properties of BAS121 Alloy Tubes for Heat-exchangers by High Frequency Induction Welding (고주파유도용접된 열교환기용 BAS121합금튜브의 기계적 특성에 미치는 인발조건의 영향)

  • Han Sang-Woo;Kim Byung-Il;Lee Hyun-Woo;Chon Woo-Young;Gook Jin-Seon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.851-856
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS121 welded tubes. The BAS121 aluminium alloy tubes with 25 mm in external diameter and 1.3 mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle $6.5^{\circ}$ and power input 55 kW. With increasing the reduction of area ($13,\;21\%$) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22 mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction in BAS121 alloys was estimated about $13\%$ because of the work hardening of welds.

A Study on the Characteristics for High Frequency Induction Heating of Ti Alloy Groove Wire (안경테용 Ti 합금 홈선의 고주파유도가열처리에 따른 특성 변화에 관한 연구)

  • Park, Jeong-Sik;Jang, Woo-Yeong;Lee, Jeong-Yeong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.3
    • /
    • pp.55-58
    • /
    • 2007
  • Titanum and its alloys have been used as the important materials of eyewear frame due to its light weight, mechanical strength and corrosion resistance. This study investigates hardness and microstructures of titanum alloy groove wires in according with heating time by high frequency induction heating. Because of increase of grain size by the growth of heating time, hardness of ${\beta}-Ti$ has reduced. Hardness of Ti-325 reduced until 2 sec and rapidly increased at 3 sec by high frequency induction heating. It is observed that hardness of Ti-325 reduces by the increase of the grain size until 2 sec and suddenly increased by the development of the detailed ${\alpha}+{\beta}$ lamella at 3 sec.

  • PDF

Fabrication and Performance of Anode-Supported Flat Tubular Solid Oxide Fuel Cell Unit Bundle (연료극 지지체식 평관형 고체산화물 연료전지 단위 번들의 제조 및 성능)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Lee, Seung-Bok;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • KIER has been developing the anode-supported flat tubular solid oxide fuel cell unit bundle for the intermediate temperature($700{\sim}800^{\circ}C$) operation. Anode-supported flat tubular cells have Ni/YSZ cermet anode support, 8 moi.% $Y_2O_3$ stabilized $ZrO_2(YSZ)$ thin electrolyte, and cathode multi-layer composed of Sr-doped $LaSrMnO_3(LSM)$, LSM-YSZ composite, and $LaSrCoFeO_3(LSCF)$. The prepared anode-supported flat tubular cell was joined with ferritic stainless steel cap by induction brazing process. Current collection for the cathode was achieved by winding Ag wire and $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ paste, while current collection for the anode was achieved by using Ni wire and felt. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90\;cm^2$ connected in series with 12 unit bundles, in which unit bundle consists of two cells connected in parallel. The performance of unit bundle in 3% humidified $H_2$ and air at $800^{\circ}C$ shows maximum power density of $0.39\;W/cm^2$ (@ 0.7V). Through these experiments, we obtained basic technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular cell unit bundle.