• 제목/요약/키워드: Inducible proteins

Search Result 243, Processing Time 0.032 seconds

Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells

  • Ryu, Dayoung;Ryoo, In-geun;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Cluster of differentiation 44 (CD44), a cell surface receptor for hyaluronic acid (HA), is involved in aggressive cancer phenotypes. Herein, we investigated the role of the CD44 standard isoform (CD44s) in hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) regulation using MCF7 overexpressing CD44s (pCD44s-MCF7). When pCD44s-MCF7 was incubated under hypoxia, levels of $HIF-1{\alpha}$, vascular endothelial growth factor, and the $HIF-1{\alpha}$ response element-derived luciferase activity were significantly increased compared to those in the control MCF7. Incubation of pCD44s-MCF7 cells with HA further increased $HIF-1{\alpha}$ accumulation, and the silencing of CD44s attenuated $HIF-1{\alpha}$ elevation, which verifies the role of CD44s in $HIF-1{\alpha}$ regulation. In addition, the levels of phosphorylated extracellular signal-regulated kinase (ERK) was higher in hypoxic pCD44s-MCF7 cells, and $HIF-1{\alpha}$ accumulation was diminished by the pharmacological inhibitors of ERK. CD44s-mediated $HIF-1{\alpha}$ augmentation resulted in two functional outcomes. First, pCD44s-MCF7 cells showed facilitated cell motility under hypoxia via the upregulation of proteins associated with epithelial-mesenchymal transition, such as SNAIL1 and ZEB1. Second, pCD44s-MCF7 cells exhibited higher levels of glycolytic proteins, such as glucose transporter-1, and produced higher levels of lactate under hypoxa. As a consequence of the enhanced glycolytic adaptation to hypoxia, pCD44s-MCF7 cells exhibited a higher rate of cell survival under hypoxia than that of the control MCF7, and glucose deprivation abolished these differential responses of the two cell lines. Taken together, these results suggest that CD44s activates hypoxia-inducible $HIF-1{\alpha}$ signaling via ERK pathway, and the $CD44s-ERK-HIF-1{\alpha}$ pathway is involved in facilitated cancer cell viability and motility under hypoxic conditions.

Research status of transcription factors involved in controlling gene expression by nitrate signaling in higher plants (고등식물의 질산시그널에 의한 유전자 발현제어 관련 전사인자의 연구현황)

  • Jung, Yu Jin;Park, Joung Soon;Go, Ji Yun;Lee, Hyo Ju;Kim, Jin Young;Lee, Ye Ji;Nam, Ki Hong;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 2021
  • Nitrate is an important nutrient and signaling molecule in plants that modulates the expression of many genes and regulates plant growth. In this study, we cover the research status of transcription factors related to the control of gene expression by nitrate signaling in higher plants. Nitrate reductase is a key enzyme in nitrogen assimilation, as it catalyzes the nitrate-to-nitrite reduction process in plants. A variety of factors, including nitrate, light, metabolites, phytohormones, low temperature, and drought, modulate the expression levels of nitrate reductase genes and nitrate reductase activity, which is consistent with the physiological role if. Recently, several transcription factors controlling the expression of nitrate reductase genes have been identified in higher plants. NODULE-INCEPTION-Like Proteins (NLPs) are transcription factors responsible for the nitrate-inducible expression of nitrate reductase genes. Since NLPs also control the nitrate-inducible expression of genes encoding the nitrate transporter, nitrite transporter, and nitrite reductase, the expression levels of nitrate reduction pathway-associated genes are coordinately modulated by NLPs in response to nitrate. Understanding the function of nitrate in plants will be useful to create crops with low nitrogen use.

The effect of heat shock protein 70 on inducible nitric oxide synthase during sepsis in rats (백서 패혈증 모델에서 HSP70의 과도 발현이 iNOS의 발현에 미치는 효과에 관한 연구)

  • Lee, Yong-Keun;Ahn, Yung;Leem, Dae-Ho;Baek, Jin-A;Ko, Seung-O;Shin, Hyo-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.5
    • /
    • pp.346-352
    • /
    • 2010
  • Introduction: Heat shock protein70 (HSP70) is a highly conserved family of proteins produced after a variety of stresses. Many studies reported that the overexpression of HSP70 can improve the prognosis of the patients with sepsis through a reduction of the nitric oxide concentration. However, these results only revealed the effect of HSP70 and nitric oxide. No studies have examined the relationship between HSP70 and nitric oxide. The aim of this study was to evaluate the effect of the overexpression of HSP70 on the expression of inducible nitric oxide synthase and the nitric oxide concentration. In addition, the mechanism of the relationship of HSP70 and inducible nitric oxide synthase (iNOS) in sepsis was examined. Materials and Methods: The experiments were performed on male sprague-dawley rats. Sepsis was induced by a cecal ligation and puncture (CLP). Glutamine (GLN) or saline was administered 1 hour after the initiation of sepsis. Serum and lung tissues were acquired from the rats 12 hours or 24 hours after the initiation of sepsis. The nitric oxide concentration, the expression of HSP70 in lung, and the gene expression of iNOS in lung were analyzed. The three groups, sham operation, CLP and CLP+GLN, were compared. Results: Compared to the other groups, in CLP+GLN, GLN administered after the initiation of sepsis enhanced the expression of HSP70 in the lung at 12 hours ($47.19{\pm}10.04$ vs. $33.22{\pm}8.28$, P=0.025) and 24 hours ($47.06{\pm}10.60$ vs. $31.90{\pm}4.83$, P=0.004). In CLP+GLN, GLN attenuated the expression of iNOS messenger RNA (mRNA) in the lung at 12 hours ($5,513.73{\pm}1,051.60$ vs. $4,167.17{\pm}951.59$, P=0.025) and 24 hours ($18,740.27{\pm}8,241.20$ vs. $9,437.65{\pm}2,521.07$, P=0.016), and reduced the concentration of nitric oxide in the serum at 12 hours ($0.86{\pm}0.48$ vs. $3.82{\pm}2.53$, P=0.016) and 24 hours ($0.39{\pm}0.25$ vs. $1.85{\pm}1.70$, P=0.025). Conclusion: The overexpression of HSP70 induced by the administration of GLN in sepsis attenuates the expression of the iNOS gene but reduces the nitric oxide concentration.

Production of hTPO Transgenic Chickens using Tetracycline-Inducible Expression System (Tetracycline-Inducible Expression System을 이용한 Human Thrombopoietin (hTPO) 형질전환 닭의 생산)

  • Kwon, M.S.;Koo, B.C.;Kim, D.H.;Kim, M.J.;Kim, T.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.2
    • /
    • pp.177-186
    • /
    • 2009
  • It is well-known that unregulated over-expression of foreign gene may have unwanted physiological or toxic effects in transgenic animals. To circumvent these problems, we constructed retrovirus vector designed to express the foreign gene under the control of the tetracycline-inducible promoter. However, gene expressions in the tetracycline-inducible expression system (Tet system) are not completely regulated but a little leaky due to the inherent defects in conventional Tet-based systems. A more tightly controllable regulatory system can be achieved when the advanced versions ($rtTA2^SM2$) of rtTA and a minimal promoter in responsive components (pTRE-tight) are used in combination therein. In this study, we tried to produce human thrombopoietin (hTPO) from various target cells and transgenic chickens using the retrovirus vector combined with Tet system. hTPO is the primary regulator of platelet production and has an important role in the survival and expansion of hematopoietic stem cells. In a preliminary experiment in vitro, higher hTPO expression and tighter expression control were observed in chicken embryonic fibroblast (CEF) cells. We also measured the biological activity of the hTPO using Mo7e cells whose proliferation is dependant on hTPO. The biological activity of the recombinant hTPO from CEF was higher than both its commercial counterpart and hTPO from other target cells. The recombinant retrovirus was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 138 injected eggs, 15 chicks hatched after 21 days of incubation. Among them, 8 hatched chicks were hTPO positive. When the Go transgenic chicken was fed doxycycline (0.5 mg per 1 gram of feed), a tetracycline derivative, hTPO concentration of the transgenic chicken blood was 200 ng/mL. Germline transmission of the transgene was confirmed in sperm of the Go transgenic roosters. These results are informative to establish transgenic chickens as bioreactors for the mass production of commercially valuable and biological active human cytokine proteins.

Development of Industrial Transgenic Plants Using Antioxidant (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • Lee, Haeng-Soon;Kim, Kee-Yeun;Kwon, Suk-Yoon;Kwak, Sang-Soo
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.49-58
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21st century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (Ipomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

  • PDF

Development of Industrial Transgenic Plants Using Antioxidant Enzyme Genes (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • Lee, Haeng-Soon;Kim, Kee-Yeun;Kwon, Suk-Yoon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21st century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (lpomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

Characterization of hrp2 + Gene Related to SNF2 Family in Schizosaccharomyces pombe (Schizosaccharomyces pombe에서 SNF2에 속하는 hrp2+ 유전자의 특성 연구)

  • Park, In-Soon
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.137-141
    • /
    • 2002
  • The SNF2/SW12 family comprises proteins from a variety of species with in vivo functions, such as transcriptional regulation, maintenance of chromosome stability during mitosis, and various types of DNA repair. This study was shown the characterization of hrp2+ gene which was isolated by PCR amplification using the conserved domain of SNF2 motifs. Sequence analysis of hrp2+ gene showed striking evolutionary conservation among the SNF2 family of proteins. The transcript of hrp2+ gene was found to be a 4.7 kb as identified by Northern hybridization. In addition, to determine the transcription initiation site of hrp2+ gene, primer extension analysis was performed. This result showed the band of 64 bp. The transcriptional start point was mapped to a position of 47 base pair from the first ATG codon of translational initiation codon. In order to investigate the inducibility of hrp2+ gene, transcript levels were examined after treating the cells to various DNA damaging agents. The transcripts of hrp2+ were induced by UV-irradiation. But the transcripts were not induced by treatment of 0.25% Methylmethane sulfonate (MMS). These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of this gene.

  • PDF

Gastric Cancer and Angiogenesis: Is VEGF a Useful Biomarker to Assess Progression and Remission?

  • Macedo, Filipa;Ladeira, Katia;Longatto-Filho, Adhemar;Martins, Sandra F.
    • Journal of Gastric Cancer
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Gastric cancer (GC) has high mortality owing to its aggressive nature. Tumor angiogenesis plays an essential role in the growth, invasion, and metastatic spread of GC. The aim of this work was to review the angiogenic biomarkers related to the behavior of GC, documented in the literature. A search of the PubMed database was conducted with the MeSH terms: "Stomach neoplasms/blood [MeSH] or stomach neoplasms/blood supply [MeSH] and angiogenic proteins/blood [Major]". A total of 30 articles were initially collected, and 4 were subsequently excluded. Among the 26 articles collected, 16 examined the role of vascular endothelial growth factor (VEGF), 4 studied endostatin, 3 investigated angiopoietin (Ang)-2, 2 studied the Ang-like protein 2 (ANGTPL2), and 1 each examined interleukin (IL)-12, IL-8, and hypoxia inducible factor. Regarding VEGF, 6 articles concluded that the protein was related to lymph node metastasis or distant metastases. Five articles concluded that VEGF levels were elevated in the presence of GC and decreased following tumor regression, suggesting that VEGF levels could be a predictor of recurrence. Four articles concluded that high VEGF levels were correlated with poor prognosis and lower survival rates. Ang-2 and ANGTPL2 were elevated in GC and associated with more aggressive disease. Endostatin was associated with intestinal GC. VEGF is the most extensively studied angiogenic factor. It is associated with the presence of neoplastic disease and lymph node metastasis. It appears to be a good biomarker for disease progression and remission, but not for diagnosis. The data regarding other biomarkers are inconclusive.

Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells (A549 인체 폐암세포에서 piceatannol에 의한 apoptosis 유발과 NO 생성의 억제)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.815-822
    • /
    • 2012
  • Piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), a natural stilbene, is an analogue of resveratrol. Although recent experimental data have revealed the health benefit potency of piceatannol, the molecular mechanisms underlying the anti-cancer activity have not yet been studied in detail. In the present study, the further possible mechanisms by which piceatannol exerts its pro-apoptotic action in cultured human lung cancer A549 cells were investigated. Exposure of A549 cells to piceatannol resulted in growth inhibition and induction of apoptosis. Apoptosis induction of A549 cells by piceatannol showed correlation with proteolytic activation of caspase-3, -8, and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase, phospholipase C-${\gamma}1$, ${\beta}$-catenin, and Inhibitor caspase-activated DNase. The increase in apoptosis by piceatannol treatment was also associated with an increase of pro-apoptotic Bax expression and decrease of anti-apoptotic Bcl-2 and Bcl-xL expression, and caused down-regulation of the inhibitor of apoptosis protein family members and up-regulation of Fas and Fas legend. In addition, piceatannol treatment markedly inhibited the expression of mRNA and proteins of inducible nitric oxide (NO) synthase, and the levels of NO production were progressively down-regulated by piceatannol treatment in a dose-dependent fashion. The results indicate that piceatannol may have therapeutic potential against human gastric cancer cells.

Expression of the EPO-like Domains of Human Thrombopoietin in Escherichia coli

  • Koh, Yeo-Wook;Koo, Tai-Young;Ju, Sang-Myoung;Kwon, Chang-Hyuk;Chung, Joo-Young;Park, Myung-Hwan;Yang, Jai-Myung;Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.553-559
    • /
    • 1998
  • cDNA of human thrombopoietin (hTPO) amplified by polymerase chain reaction from a cDNA library of human fetal liver was cloned. EPO-like domains ($hTPO_{153} \;or\; hTPO_{l63})\; of\; hTPO(hTPO_{332}$) were expressed in Escherichin coli using several kinds of expression systems, such as ompA secretion, thioredoxin fusion, and the $P_L$ and T7 expression systems. To obtain $hTPO_{153}$ in soluble form, $hTPO_{153}$ cDNA was fused in-frame behind the gene encoding ompA signal sequence and thioredoxin protein. When fused with either of the genes, $hTPO_{153}$ was not expressed to the detectable level. However, a high level expression of the EPO-like domain of hTPO was obtained using the PL and T7 expression system. $hTPO_{153} \;or\; hTPO_{l63} cDNA were subcloned into the pLex and pET-28a(+) vectors under the control of the inducible$ P_L\;T_7$ promoter, respectively. Proteins expressed using pl.ex vector and pET-28a(+) detected in insoluble forms with an expression level of about 14% and 9% of total cellular proteins, respectively, and the level of expression was rapidly diminished in 2 h after the maximum level of expression was reached.

  • PDF