• Title/Summary/Keyword: Inducible NO synthase

Search Result 811, Processing Time 0.028 seconds

Anti-inflammatory Effects of Kiyomi (Citrus unshiu × C. sinensis) Leaf Ethanol Extract Via the Regulation of NF-𝜅B and MAPKs in LPS Induced RAW 264.7 Cells (청견 잎 에탄올 추출물의 NF-𝜅B와 MAPK 조절을 통한 항염증 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.159-169
    • /
    • 2023
  • Purpose : Though other Citrus spp. have reported their anti-inflammatory and antioxidative activities in previous studies, the biological activity of Kiyomi (Citrus unshiu × C. sinensis) has not been reported yet. Therefore, this study attempted to analyze the anti-inflammatory mechanisms of Kiyomi leaf ethanol extract (KLEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : The cytotoxic effect of KLEE in RAW 264.7 cells was determined by WST-1 assay. Bacterial endotoxin, the concentration of nitric oxide (NO) was analyzed by the Griess reaction. In addition, Western blot analysis was applied to measure the protein expression level of inducible NO synthase (iNOS). The phosphorylated status of the critical inflammatory transcription factor, nuclear factor (NF)-𝜅B, and its upstream signaling molecules, phosphoinositide 3-kinase (PI3K)/Akt as well as mitogen-activated protein kinases (MAPKs), were also measured by Western blot analysis. Results : KLEE was not cytotoxic up to a concentration of 200 ㎍/㎖, and protein expression levels of iNOS and cyclooxygenase (COX)-2, enzymes that counteract NO and prostaglandin (PG) E2 production, were inhibited by KLEE treatment. The phosphorylated status of PI3K/Akt as well as MAPKs including extracellular regulated kinase (ERK), c-jun NH2kinase (JNK), and p38, were significantly attenuated by KLEE treatment in LPS stimulated RAW 264.7 cells. Moreover, one of phase II enzymes, heme oxygenase (HO)-1 which has known for its anti-inflammatory capacity, was strongly induced by KLEE treatment. Conclusion : Consequently, KLEE treatment significantly attenuated the production of NO as well as the expression levels of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-𝜅B, as well as its upstream signaling molecules, PI3K/Akt and MAPKs, were also diminished by KLEE treatment with statistical significance in LPS-stimulated RAW 264.7 cells. These results suggest that KLEE might be a promising candidate for the attenuation of inflammatory disorders.

Losartan Modifies Nitric Oxide-related Vasorelaxation in Isolated Aorta of Spontaneously Hypertensive Rat (선천성 고혈압흰쥐 적출대동맥에서 Nitric Oxide와 관련된 이완 반응에 Losartan이 미치는 영향)

  • Park, Bong-Gee;Han, Hyung-Soo;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.337-342
    • /
    • 1994
  • It is well known that angiotensin converting enzyme inhibitors(ACEIs) increase endothelium-dependent relaxation in aortic strips of spontaneously hypertensive rats(SHR) and this increase in relaxation may be due to altered endothelial nitric oxide breakdown. But there are few studies on the effect of the angiotensin II receptor blocker on the nitric oxide-mediated relaxation. So we attempted to investigate the effect of angiotensin II receptor blocker on the nitric oxide-dependent relaxation in isolated aorta of SHR. Two week-treatment of losartan (30 mg/kg/day) increased the acetylcholine$(10^{-9}\;to\;10^{-5}\;M)$-and histamine$(10^{-8}\;to\;10^{-4}\;M)$-induced relaxation in endothelium intact strips but 90 minutes-treatment of losartan $(10^{-4}\;M)$ showed no increase in relaxation. The phenylephrine $(10^{-7}\;M)$-induced contraction, repeated every 2 hours, was diminished gradually following lipopolysaccharide (LPS)-treatment $(100\;{\mu}g/ml)$ but there was no significant difference in enalapril- and losartan-treated group compared with control group. These results suggest that activity of the endothelial constitutive NO synthase may be changed by chronic treatment of angiotensin II receptor blockers and ACEIs but angiotensin II antagonist and ACEI have no effect on the inducible NO synthase activity in the isolated aorta of SHR

  • PDF

Alteration of Nitric Oxide Synthase and Guanylyl Cyclase Activity in Rats with Ischemia/Reperfusion Renal Injury

  • Bae, Eun-Hui;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.6
    • /
    • pp.337-341
    • /
    • 2006
  • The present study was designed to investigate the protein expression of nitric oxide synthase (NOS) and guanylyl cyclase (GC) activity in ischemia/perfusion (I/R) renal injury in rats. Renal I/R injury was experimentally induced by clamping the both renal pedicle for 40 min in Sprague-Dawley male rats. The renal expression of NOS isoforms was determined by Western blot analysis, and the activity of guanylyl cyclase was determined by the amount of guanosine 3', 5'-cyclic monophosphate (cGMP) formed in response to sodium nitroprusside (SNP), NO donor. I/R injury resulted in renal failure associated with decreased urine osmolality. The expression of inducible NOS (iNOS) was increased in I/R injury rats compared with controls, while endothelial NOS (eNOS) and neuronal NOS (nNOS) expression was decreased. The urinary excretion of NO metabolites was decreased in I/R injury rats. The cGMP production provoked by SNP was decreased in the papilla, but not in glomerulus. These results indicate an altered regulation of NOS expression and guanylyl cyclase activity in I/R-induced nephropathy.

Inhibition of Inducible Nitric Oxide Synthase Expression by YS 49, a Synthetic Isoquinoline Alkaloid, in ROS 17/2.8 Cells Activated with $TNF-{\alpha},\;IFN-{\gamma}$ and LPS

  • Kang, Young-Jin;Kang, Sun-Young;Lee, Young-Soo;Park, Min-Kyu;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;YunChoi, Hye-Sook;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.273-280
    • /
    • 2004
  • Nitric oxide (NO) has been suggested to act as a mediator of cytokine-induced effects of turn over of bone. Activation of the inducible nitric oxide synthase (iNOS) by inflammation has been related with apoptotic cell death in osteoblast. YS 49, a synthetic isoquinoline alkaloid, inhibits NO production in macrophages activated with cytokines. In the present study, we investigated the molecular mechanism of YS 49 to inhibit iNOS expression in ROS 17/2.8 cells, which were activated with combined treatment of inflammatory cytokines $(TNF-{\alpha},\;IFN-{\gamma})$ and lipopolysaccharide (LPS). Results indicated that YS 49 concentration-dependently reduced iNOS mRNA and protein expression, as evidenced by Northern and Western blot analysis, respectively. The underlying mechanism by which YS 49 suppressed iNOS expression was not to affect iNOS mRNA stability but to inhibit activation and translocation of $NF-_kB$ by preventing the degradation of its inhibitory protein $I_kB_{\alpha}$. As expected, YS 49 prevented NO-induced apoptotic cell death by sodium nitroprusside. Taken together, it is concluded that YS 49 inhibits iNOS expression by interfering with degradation of phosphorylated inhibitory $_kB_{\alpha}\;(p-I_kB_{\alpha})$. These actions may be beneficial for the treatment of inflammation of the joint, such as rheumatoid arthritis.

Inhibitory Activity of Chinese Medicinal Plants on Nitric Oxide Synthesis in Lipopolysaccharide -Activated Macrophages

  • Ryu, Jae-Ha;Ahn, Han-Na;Lee, Hwa-Jin;Feng, Li;Qun, Wen-He;Han, Yong-Nam;Han, Byung-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.183-187
    • /
    • 2001
  • Nitric oxide (NO) produced in large amounts by the inducible nitric oxide synthase (iNOS) is known to be responsible for the vasodilation and hypotension observed in septic shock and inflammation. The inhibitors of iNOS, thus, may be useful candidate for the treatment of inflammatory diseases accompanied by the overproduction of NO. We prepared alcoholic extracts of Chinese medicinal plants and screened their inhibitory activity against NO production in lipopolysaccharide (LPS)-activated macrophages. Among the 80 kinds of extracts of herbal drugs, 15 extracts showed potent inhibitory activity of NO production above 80% at the concentration o$50\mu\textrm{g}/ml$. These potent extracts showed dose dependent inhibition of NO production of LPS-activated macrophages at the concentration of 50, 30,$10\mu\textrm{g}/ml$. Especially, Rhus chinensis, Senecio scandens and Wikstroemia indica showed most potent inhibition above 50% at the concentration of $10\mu\textrm{g}/ml$. These plants are promising candidates for the study of the activity-guided purification of active compounds and would be useful for the treatment of inflammatory diseases and endotoxemia accompanying the overproduction of NO.

  • PDF

Effects of Lignan Compound of Sesame on LPS-induced Nitric Oxide Generation in Murine Macrophage RAW 264.7 Cells (참깨의 리그난 화합물의 항염증 효과)

  • Lee, Hwa-Jeong;Son, Dong-Ju;Kang, Myung-Hwa;Lee, Bum-Chun;Hong, Jin-Tae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.3 s.58
    • /
    • pp.173-180
    • /
    • 2006
  • Sesame (Sesamum indicum L.), one of the oldest oilseed crops, has been known to posses antioxidative and inflammatory effects. This seed contains lignan compounds such as sesamin, sesamol, sesaminol, sesaminol diglucosides (SDG), and sesaminol triglucosides (STG). Sesamin, a major lignan in sesame, displayed several biological activities including a protective effects against oxidative damage in the skin. In the present study, we investigated the effect of sesamin, sesamol, sesaminol, SDG, and STG, on nitric oxide (NO) induction and inducible nitric oxide synthane (iNOS) and cyclooxygenases-2 (COX-2) expression in lipopolysaccharides (LPS)-treated RAW 264.7 cells. The results showed that sesamol and sesaminol significantly inhibited NO generation but they were also cytotoxicity however, sesamin effectively inhibited NO production ($IC_{50}: 64{\mu}M$) without my cytotoxic effect in LPS-stimulated macrophage RAW 264.7 cells. In further study, it was founded that sesamin inhibited the expression of inducible nitric oxide synthase but not COX-2 expression. These results suggest that sesamin may be useful for improvements of the inflammatory diseases.

Cedrela sinensis Leaves Suppress Oxidative Stress and Expressions of iNOS and COX-2 via MAPK Signaling Pathways in RAW 264.7 Cells

  • Bak, Min-Ji;Jeong, Jae-Han;Kang, Hye-Sook;Jin, Kyong-Suk;Ok, Seon;Jeong, Woo-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Overproduction of reactive oxygen species (ROS), including nitric oxide (NO), could be associated with the pathogenesis of various diseases such as cancer and chronic inflammation. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are known to play key roles in the development of these diseases. Cedrela sinensis leaves have been used in Asian countries as a traditional remedy for enteritis, dysentery and itching. In the present study, we investigated the anti-inflammatory effects of Cedrela sinensis leaves in lipopolysaccharide (LPS)- stimulated RAW 264.7 macrophages. Powder of C. sinensis leaves was extracted with 95% ethanol and fractionated with a series of organic solvents including n-hexane, dichloromethane, ethyl acetate, n-butanol, and water. The dichloromethane (DCM) fraction strongly inhibited NO production possibly by down-regulating iNOS and COX-2 expression, as determined by Western blotting. Hydrogen peroxide-induced generation of reactive oxygen species (ROS) was also effectively inhibited by the DCM fraction from C. sinensis leaves. In addition, C. sinensis inhibited LPS-mediated p65 activation via the prevention of IκB-$\alpha$ phosphorylation. Furthermore, mitogen-activated protein kinases (MAPKs) such as ERK 1/2 and p38 were found to affect the expression of iNOS and COX-2 in the cells. Taken together, our data suggest that leaves of C. sinensis could be used as a potential source for anti-inflammatory agents.

Inhibitory Effect of Taraxci Herba Methanol Extract on Pro-inflammatory Mediator in Lipopolysaccharide;Activated Raw 264.7 cells

  • Jo, Mi-Jeong;Chu, Yan-Hui;Back, Young-Doo;Lee, Byung-Wook;Shin, Soon-Shik;Kwon, Young-Kyu;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.907-913
    • /
    • 2008
  • Taraxci Herba (TH; Pogongyoung in Korean) has been used in traditional oriental medicine for the treatment of various ailments. The biological activity of this plant is not yet evaluated systematically. This study was conducted to evaluate the inhibitory effects of TH on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated Raw264.7 cells. The aim of the present work is to investigate a potential anti-inflammatory activity of TH. The Raw264.7 cells were cultured in DMEM medium for 24 h. After serum starvation for 12 h, the cells were treated with TH for 1 h, followed by stimulating NO production with LPS ($2{\mu}g/ml$). As result of this study, TH inhibited the levels of NO, PGE2, $TNF-{\alpha}$, IL-6 and $IL-1{\beta}$, and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) activated by LPS. These inhibitory effects were mediated though the inhibition of phosphorylation of inhibitory kappa B ($I{\kappa}B$). These findings showed that TH could have some anti-inflammatory effects.

The Inhibitory Effect of Lycii Fructus on LPS-stimulated NF-${\kappa}B$ Activation and iNOS Expression in RAW 264.7 Macrophages

  • Kim, Beum-Seuk;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.47-59
    • /
    • 2008
  • Objective : Anti-inflammatory effects of the extract of Lycii Fructus on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells were investigated. Method : In order to assess the cytotoxic effect of Lycii Fructus on the raw 264.7 macrophages 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay was performed. Reverse transcription-polymerase chain reaction(RT-PCR) analysis of the mRNA levels of tumor necrosis factor-$\alpha$(TNF-$\alpha$) and inducible nitric oxide synthase(iNOS) was performed in order to provide an estimate of the relative level of expression of these genes. The protein level of the inhibitor of nuclear factor-${\kappa}B(I{\kappa}B)$ and nuclear factor-${\kappa}B$(NF-${\kappa}B$) activity was investigated by Western blot assay. NO production was investigated by NO detection. Result : Lycii Fructus suppressed NO production by inhibiting the LPS-induced expressions of iNOS and TNF-$^-\alpha$ mRNA and iNOS protein in RAW 264.7 macrophage cells. Also, Lycii Fructus suppressed activation of NF-${\kappa}B$ in the nucleus. Conclusion : These results show that the extract of Lycii Fructus has anti-inflammatory effect probably by suppressing iNOS expressions through the down-regulation of NF-${\kappa}B$ binding activity.

  • PDF

Inhibitory effects of Sam-Myo-San on the LPS-induced production of nitric oxide and $TNF-{\alpha}$ in RAW 264.7 cells and BV-2 Microglia cells (삼묘환(三妙丸)의 LPS에 의해 활성화된 RAW 264.7 cells과 BV-2 Microglia cells로부터 생성되는 nitric oxide 및 $TNF-{\alpha}$의 생성억제효과)

  • Lee, Jae-Hyun;Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.59-67
    • /
    • 2006
  • Objectives : Sam-Myo-Whan(SMW) has been known traditional prescription with anti- anthritis activities. We investigated inhibitory effects of SMW on lipopolysaccharide (LPS)-induced nitric oxide(NO), $TNF-{\alpha}$ and inducible nitric oxide synthase(iNOS) production from RAW264.7 cells and BV-2 Microglia cells. Methods : SMW, which had been extracted with 70% MeOH, concentrated and freeze-dried was used for this experiment. After BV2 mouse brain macrophages and RAW264.7 mouse peritoneal macrophages were pretreated with increasing concentrations of SMW extract for 30min, and then activated with LPS. To investigate cytotoxicity of SMW extract, cell viability was measured by MTT assay. NO production was measured in each culture supernatant by Griess reaction. mRNA expression of iNOS in two type cells was investigated by RT-PCR. $TNF-{\alpha}$ production was measured in each culture supernatant by ELISA. Results : SMW extract significantly inhibited LPS-induced NO and $TNF-{\alpha}$ production in BV2 cells and RAW264.7 cells dose-dependently. SMW extract also greatly suppressed mRNA expression of iNOS in both type cells activated with LPS. Conclusion : These data suggests that SMW extract may have an anti-inflammatory effect through the inhibition of iNOS expression.

  • PDF