• Title/Summary/Keyword: Induced demand

Search Result 257, Processing Time 0.029 seconds

Numerical study of ITZ contribution on diffusion of chloride and induced rebar corrosion: A discussion of three-dimensional multiscale approach

  • Tu, Xi;Pang, Cunjun;Zhou, Xuhong;Chen, Airong
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.69-80
    • /
    • 2019
  • Modeling approach for mesoscopic model of concrete depicting mass transportation and physicochemical reaction is important since there is growing demand for accuracy and computational efficiency of numerical simulation. Mesoscopic numerical simulation considering binder, aggregate and Interfacial Transition Zone (ITZ) generally produces huge number of DOFs, which is inapplicable for full structure. In this paper, a three-dimensional multiscale approach describing three-phase structure of concrete was discussed numerically. An effective approach generating random aggregate in polygon based on checking centroid distance was introduced. Moreover, ITZ elements were built by parallel expanding the surface of aggregates on inner side. By combining mesoscopic model including full-graded aggregate and macroscopic model, cases related to diffusivity and thickness of ITZ, volume fraction and grade of aggregate were studied regarding the consideration of multiscale compensation. Results clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of, rebar diameter, concrete cover and exposure period.

Improvement of R-value in Al-Mg-Si-Cu Alloy Sheets by Cross Rolling (크로스 압연에 의한 Al-Mg-Si-Cu 합금 판재의 소성변형비의 향상)

  • Lee, Kwang-jin;Jeon, Jae-yeol;Woo, Kee-do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.488-492
    • /
    • 2011
  • Heat-treatable Al-Mg-Si-Cu alloy sheets, which are expected to have a growing demand, were fabricated by Cross rolling to improve their formability. The mechanical properties and texture of the sheets after the final annealing process were investigated by a tensile test, EBSD and XRD analysis. The grain size of the cross-rolled sheets was remarkably decreased compared to conventional rolled sheets, and the R-value of the cross-rolled sheets was notably increased by about one and a half times that of the conventional rolled sheet. Cube{001}<100> and cubic system orientations were strongly developed in conventional rolled sheets. However, randomized textures were formed in the cross-rolled sheets without specific texture. It is thought that much shear deformation was induced during the cross rolling. The results show that the cross rolling method is effective for improving the R-value of aluminum alloys sheets and their grain refinement. As a result, it is considered that cross rolling is effective for improving formability.

Antaroide, a Novel Natural Nine-Membered Macrolide, Inhibits Melanin Biosynthesis in B16F10 Murine Melanoma Cells

  • Ryu, Min-Ji;Baek, Eun-Ki;Kim, Soyeon;Seong, Chi Nam;Yang, Inho;Lim, Kyung-Min;Nam, Sang-Jip
    • Biomolecules & Therapeutics
    • /
    • v.29 no.1
    • /
    • pp.98-103
    • /
    • 2021
  • The demand for natural substances with anti-melanogenic activity is increasing due to the recent interest in skin whitening. Intensive investigation on the culture broth of Streptomyces sp. SCO-736, a marine bacterium from the Antarctica coast, has led to the isolation of a new natural product named antaroide (1). The chemical structure was established through the interpretation of MS, UV, and NMR spectroscopic data. Antaroide is a nine-membered macrolide with lactone and lactam moieties. To investigate its applicability in skin whitening cosmetics, its anti-melanogenic activity in B16F10 murine melanoma cells was examined. As a result, antaroide displayed strong inhibitory activities against melanin synthesis and also attenuated the dendrite formation induced by the α-melanocyte stimulating hormone (α-MSH). Antaroide suppressed the mRNA expression of the melanogenic enzymes such as tyrosinase, TRP-1 and TRP-2. This suggests that it may serve as a transcriptional regulator of melanogenesis. Collectively, the discovery of this novel natural nine-membered macrolide and its anti-melanogenic activity could give new insights for the development of skin whitening agents.

Phosphorus removal by lime-natural mineral dissolved solutions

  • Joohyun, Kim;Sunho, Yoon;Jueun, Jung;Sungjun, Bae
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • In previous studies, solely ferric (Fe3+) and calcium (Ca2+) ions were commonly used for removal of PO4-P (considered as T-P in this study) in wastewater via chemical precipitation. Herein, the removal of total phosphorus (T-P) in wastewater was performed using various mineral and lime dissolved solutions. The dissolution kinetics of different minerals (feldspar, olivine, elvan, illite, sericite, and zeolite) and lime was compared and used their solutions for T-P removal of real wastewater. The highest T-P removal (almost 90%) was obtained by the lime dissolved solution and followed by zeolite, illite, feldspar, and others. We observed a significant co-relationship (R of 0.96) between the amount of initial Ca2+ and T-P removal. This was induced by formation of hydroxyapatite-like mineral via Ca-P precipitation reaction at high pH solution. Furthermore, additional removal of suspended solid (SS) and chemical oxygen demand (COD) was achieved by only lime dissolved solution. Finally, the lime-feldspar dissolved solutions were prepared at different ratios (10-50%), which showed a successive T-P removal up to two times by samples of 40 and 50%.

Lipofuscin Granule Accumulation Requires Autophagy Activation

  • Seon Beom Song;Woosung Shim;Eun Seong Hwang
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.486-495
    • /
    • 2023
  • Lipofuscins are oxidized lipid and protein complexes that accumulate during cellular senescence and tissue aging, regarded as markers for cellular oxidative damage, tissue aging, and certain aging-associated diseases. Therefore, understanding their cellular biological properties is crucial for effective treatment development. Through traditional microscopy, lipofuscins are readily observed as fluorescent granules thought to accumulate in lysosomes. However, lipofuscin granule formation and accumulation in senescent cells are poorly understood. Thus, this study examined lipofuscin accumulation in human fibroblasts exposed to various stressors. Our results substantiate that in glucose-starved or replicative senescence cells, where elevated oxidative stress levels activate autophagy, lipofuscins predominately appear as granules that co-localize with autolysosomes due to lysosomal acidity or impairment. Meanwhile, autophagosome formation is attenuated in cells experiencing oxidative stress induced by a doxorubicin pulse and chase, and lipofuscin fluorescence granules seldom manifest in the cytoplasm. As Torin-1 treatment activates autophagy, granular lipofuscins intensify and dominate, indicating that autophagy activation triggers their accumulation. Our results suggest that high oxidative stress activates autophagy but fails in lipofuscin removal, leaving an abundance of lipofuscin-filled impaired autolysosomes, referred to as residual bodies. Therefore, future endeavors in treating lipofuscin pathology-associated diseases and dysfunctions through autophagy activation demand meticulous consideration.

Effects of Antimicrobial Socks Using Hemp Stem Bark Extract Fibers on Foot Health Improvement (대마줄기껍질 추출 섬유를 활용한 항균 양말이 발 건강 개선에 미치는 영향)

  • Su-Hyun Kim;Hee-Sook Kim
    • Fashion & Textile Research Journal
    • /
    • v.26 no.2
    • /
    • pp.190-197
    • /
    • 2024
  • With increasing global interest in environmentally friendly materials and the consequent rise in demand, there is a growing need for alternatives to synthetic fibers, which can cause skin diseases and other side effects. The fashion industry is emphasizing material sustainability owing to concerns about increasing carbon emissions. Moreover, consumers express a strong desire for ecofriendly and sustainable materials. Therefore, clothing brand companies are developing eco-friendly products to enhance their corporate image. Hemp fibers are recognized for their functionality and are utilized as crucial materials in the development of eco-friendly products by global fashion companies. In this study, we produced socks that effectively improve foot health using hemp stem bark extract fibers and demonstrated the positive efficacy of natural fibers through functional and wearability evaluations. Hemp stem bark extract fibers showed 99.9% antimicrobial effectiveness against bacteria responsible for sweat-induced bacterial proliferation and odor, when blended with lyocell fibers and woven into fabric to manufacture socks. Wearability evaluations of these terry cloth socks confirmed a reduction in foot odor and fatigue among the participants with a consumer satisfaction of 4.63/5. These findings confirm the effectiveness and positive impact of the natural antimicrobial properties of hemp fibers and terry cloth structure in improving foot health.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

The Influences of Cognitive Conflict and Non-Cognitive Variables on Conceptual Change and the Sources of Situational Interest Induced by a Discrepant Event (인지갈등과 비인지적 변인이 개념변화에 미치는 영향 및 변칙사례에 의해 유발된 상황 흥미의 근원)

  • Kang, Hun-Sik;Kim, Min-Kyoung;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.1
    • /
    • pp.18-27
    • /
    • 2007
  • This study examined the influences of cognitive conflict and non-cognitive variables induced by a discrepant event on process of conceptual change, and the processes that a discrepant event lead to situational interest. Seventh graders participated in this study. A preconception test was administered to select students possessing misconceptions about density. The tests of cognitive response and situational interest to a discrepant event were administered. After learning with a CAl program, the tests assessing attention and effort allocated to the CAl, and conceptual understanding were also administered. A path analysis revealed that cognitive conflict induced by a discrepant event caused situational interest, which in turn increased attention and/or effort and thus, resulted in conceptual change. The results of the path analysis on the processes in which a discrepant event led to situational interest suggested that novelty may be a primary source of situational interest. Novelty influenced situational interest directly as well as through attention demand, exploration intention, and instant enjoyment. Moreover, novelty exerted a direct effect on challenge, which in turn had negative effects on instant enjoyment directly as well as through cognitive conflict, and thus, decreased situational interest. However, the path coefficients of the latter were relatively smaller than those of the former. Educational implications are discussed.

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

  • Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Kang, Songhwa;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Lamichane, Shreekrishna;Lamichane, Babita Dahal;Chae, Young Chan;Lee, Dongjun;Chung, Joo Seop;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.

Rapid Rural-Urban Migration and the Rural Economy in Korea (한국(韓國)의 급격(急激)한 이촌향도형(離村向都型) 인구이동(人口移動)과 농촌경제(農村經濟))

  • Lee, Bun-song
    • KDI Journal of Economic Policy
    • /
    • v.12 no.3
    • /
    • pp.27-45
    • /
    • 1990
  • Two opposing views prevail regarding the economic impact of rural out-migration on the rural areas of origin. The optimistic neoclassical view argues that rapid rural out-migration is not detrimental to the income and welfare of the rural areas of origin, whereas Lipton (1980) argues the opposite. We developed our own alternative model for rural to urban migration, appropriate for rapidly developing economies such as Korea's. This model, which adopts international trade theories of nontraded goods and Dutch Disease to rural to urban migration issues, argues that rural to urban migration is caused mainly by two factors: first, the unprofitability of farming, and second, the decrease in demand for rural nontraded goods and the increase in demand for urban nontraded goods. The unprofitability of farming is caused by the increase in rural wages, which is induced by increasing urban wages in booming urban manufacturing sectors, and by the fact that the cost increases in farming cannot be shifted to consumers, because farm prices are fixed worldwide and because the income demand elasticity for farm products is very low. The demand for nontraded goods decreases in rural and increases in urban areas because population density and income in urban areas increase sharply, while those in rural areas decrease sharply, due to rapid rural to urban migration. Given that the market structure for nontraded goods-namely, service sectors including educational and health facilities-is mostly in monopolistically competitive, and that the demand for nontraded goods comes only from local sources, the urban service sector enjoys economies of scale, and can thus offer services at cheaper prices and in greater variety, whereas the rural service sector cannot enjoy the advantages offered by scale economies. Our view concerning the economic impact of rural to urban migration on rural areas of origin agrees with Lipton's pessimistic view that rural out-migration is detrimental to the income and welfare of rural areas. However, our reasons for the reduction of rural income are different from those in Lipton's model. Lipton argued that rural income and welfare deteriorate mainly because of a shortage of human capital, younger workers and talent resulting from selective rural out-migration. Instead, we believe that rural income declines, first, because a rapid rural-urban migration creates a further shortage of farm labor supplies and increases rural wages, and thus reduces further the profitability of farming and, second, because a rapid rural-urban migration causes a further decline of the rural service sectors. Empirical tests of our major hypotheses using Korean census data from 1966, 1970, 1975, 1980 and 1985 support our own model much more than the neoclassical or Lipton's models. A kun (county) with a large out-migration had a smaller proportion of younger working aged people in the population, and a smaller proportion of highly educated workers. But the productivity of farm workers, measured in terms of fall crops (rice) purchased by the government per farmer or per hectare of irrigated land, did not decline despite the loss of these youths and of human capital. The kun having had a large out-migration had a larger proportion of the population in the farm sector and a smaller proportion in the service sector. The kun having had a large out-migration also had a lower income measured in terms of the proportion of households receiving welfare payments or the amount of provincial taxes paid per household. The lower incomes of these kuns might explain why the kuns that experienced a large out-migration had difficulty in mechanizing farming. Our policy suggestions based on the tests of the currently prevailing hypotheses are as follows: 1) The main cause of farming difficulties is not a lack of human capital, but the in­crease in production costs due to rural wage increases combined with depressed farm output prices. Therefore, a more effective way of helping farm economies is by increasing farm output prices. However, we are not sure whether an increase in farm output prices is desirable in terms of efficiency. 2) It might be worthwhile to attempt to increase the size of farmland holdings per farm household so that the mechanization of farming can be achieved more easily. 3) A kun with large out-migration suffers a deterioration in income and welfare. Therefore, the government should provide a form of subsidization similar to the adjustment assistance provided for international trade. This assistance should not be related to the level of farm output. Otherwise, there is a possibility that we might encourage farm production which would not be profitable in the absence of subsidies. 4) Government intervention in agricultural research and its dissemination, and large-scale social overhead projects in rural areas, carried out by the Korean government, might be desirable from both efficiency and equity points of view. Government interventions in research are justified because of the problems associated with the appropriation of knowledge, and government actions on large-scale projects are justified because they required collective action.

  • PDF