• 제목/요약/키워드: Induced angle

검색결과 775건 처리시간 0.027초

A Numerical Study on the Effect of Inlet Guide Vane Angle on the Performance of Francis Hydraulic Turbine

  • Kim Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.750-757
    • /
    • 2005
  • The objective of this study is an understanding of the effect of inlet flow angle on the output power performance of a Francis hydraulic turbine, An optimum induced angle at the inlet of the turbine is one of the most important design parameters to have the best performance of the turbine at a given operating condition, In general. rotating speed of the turbine is varied with the change of water mass flowrate in a volute, The induced angle of the inlet water should be properly adjusted to the operating condition to have maximum energy conversion efficiency of the turbine, In this study. a numerical simulation was conducted to have detail understanding of the flow phenomenon in the flow path and output power of the model Francis turbine. The indicated power produced by the model turbine at a given operating condition was found numerically and compared to the brake power of the turbine measured by experiment at KIER. From comparison of two results, turbine efficiency or energy conversion efficiency of the model turbine was estimated. From the study, it was found that the rotating power of the turbine linearly increased with the rotating speed. It means that the higher volume flow rate supplied. the bigger torque on the turbine shaft generated. The maximum brake efficiency of the turbine is around 46$\%$ at 35 degree of induced angle. The difference between numerical and experimental output of the model turbine is defined as mechanical efficiency. The maximum mechanical efficiency of the turbine is around 93$\%$ at 25$\∼$30 degree of induced angle.

Effects of the yaw angle on the aerodynamic behaviour of the Messina multi-box girder deck section

  • Diana, G.;Resta, F.;Zasso, A.;Belloli, M.;Rocchi, D.
    • Wind and Structures
    • /
    • 제7권1호
    • /
    • pp.41-54
    • /
    • 2004
  • An analysis refinement of the Messina Strait suspension bridge project has been recently required, concerning mainly the yaw angle effects on the multi-box deck section aerodynamics and the vortex shedding at low reduced velocities $V^*$. In particular the possible interaction of the axial flow with the large cross beams has been investigated. An original test rig has been designed at this purpose allowing for both forced motion and free motion aero elastic tests, varying the average angle of attack ${\alpha}$ and the deck yaw angle ${\beta}$. The hydraulic driven test rig allowed for both dynamic and stationary tests so that both the stationary coefficients and the flutter derivatives have been evaluated for each yaw angle. Specific free motion tests, taking advantage from the aeroelastic features of the section model, allowed also the study of the vortex shedding induced phenomena.

유체유동에 의한 경사원주의 진동과 제진에 관한 연구 (Flow Induced Vibration and Suppression of Inclined Cylinder)

  • 양보석;복정희일랑;암호탁삼
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1381-1390
    • /
    • 1992
  • 본 연구에서는 경사원주에서 발생하는 소용돌이 여기진동을 억제하기 위한 방 법으로 원주구조물 주위에서 발생하는 규칙적인 소용돌이 방출에 의한 여진력을 감소 시키도록 원주표면에 fin이나 wire를 부착시켜 단면형상을 바꾸는 방안을 실험적으로 검토한다. 즉, 밀폐순환식 유로을 이용하여 흐름에 경사되도록 탄성지지된 원주에 나선상의 fin과 wire를 감아, 경사각(.theta.)을 45, 60, 75, 90도, 나선피치각(.alpha.)을 30, 35, 40, 45, 50, 55, 60도, 나선권수(n)를 1,2,3으로 하여, 진동특성을 실험적으로 조사하고, plain원주와 비교하여 제진효과를 확인하며, 더우기 나선핀 원주의 최적형 상을 구하는 것을 목적으로 한다.

Experimental study on wake-induced vibrations of two circular cylinders with two degrees of freedom

  • Du, Xiaoqing;Jiang, Benjian;Dai, Chin;Wang, Guoyan;Chen, Suren
    • Wind and Structures
    • /
    • 제26권2호
    • /
    • pp.57-68
    • /
    • 2018
  • Wind tunnel tests are conducted to investigate wake-induced vibrations of two circular cylinders with a center-to-center spacing of 4 diameters and attack angle varying from $0^{\circ}$ to $20^{\circ}$ for Reynolds numbers between 18,000 and 168,800. Effects of structural damping, Reynolds number, attack angle and reduced velocity on dynamic responses are examined. Results show that wake-induced vortex vibrations of the downstream cylinder occur in a wider range of the reduced velocity and have higher amplitudes in comparison to the vortex-induced vibration of a single circular cylinder. Two types of wake-induced instability phenomena with distinct dynamic characteristics are observed, which may be due to different generation mechanisms. For small attack angles like $5^{\circ}$ and $10^{\circ}$, the instability of the downstream cylinder characterizes a one-degree-of-freedom (1-DOF) oscillation moving in the across-wind direction. For a large attack angle like $20^{\circ}$, the instability characterizes a two-degree-of-freedom (2-DOF) oscillation with elliptical trajectories. For an attack angle of $15^{\circ}$, the instability can transform from the 1-DOF pattern to the 2-DOF one with the increase of the Reynolds number. Furthermore, the two instabilities show different sensitivity to the structural damping. The 1-DOF instability can be either completely suppressed or reduced to an unsteady oscillation, while the 2-DOF one is relatively less sensitive to the damping level. Reynolds number has important effects on the wake-induced instabilities.

CFRP 사교적층판의 충격손상에 관한 연구 (A Study on the Impact-Induced Damage in CFRP Angle-ply Laminates)

  • 배태성;입야영;양동률
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.237-247
    • /
    • 1993
  • 본 연구에서는 CFRP 적층재를 구조재료로 사용할 경우 우수한 인장강도를 갖 지만, 충격하중에 취약한 특성을 갖기 때문에 구조안정성에 관한 큰 문제의 하나로 충 격손상을 받은 적층판의 잔류 압축강도가 현저히 저하되는 것이 문제점으로 지적되어 왔다.특히, 충격손상에 의한 압축강도의 저하는 인장강도보다 압축강도에 중점을 두는 항공기의 강도설계에서 중요한 문제가 되므로, 저속충격에 의한 복합재료 구조체 의 충격파괴의 문제를 잘 이해하는 것이 요구된다. 지금까지의 연구에 의하면 CFRP 복합적층재의 손상은 주로 층간박리현상과 손상역의 크기변화를 실험적으로 고찰하였 다.

면내외 굽힘 효과를 고려한 최대 주응력 기반 계류 체인 피로 평가 기법 개발 (A Novel Procedure for Mooring Chain Fatigue Prediction based on Maximum Principal Stress Considering Out-of-Plane and In-Plane Bending Effects)

  • 정준모;한승오
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.237-248
    • /
    • 2016
  • As OPB and IPB moment-induced fatigue damage on mooring chain links were reported for a offloading buoy, verification of OPB and IPB fatigue has been a key engineering item in offshore structure mooring design. Mathematical and physical features of the conventional approach which was mainly explained in BV guideline are reviewed and disadvantages of the conventional approach are addressed in terms of stress proportionality and nonlinearity of OPB and IPB moments. In order to eradicate these disadvantages, a novel approach is newly proposed which is able to dispel apprehension on stress proportionality and is not dependent of nonlinearities of OPB and IPB moments. Significant differences between two approaches are suggested by comparing relations of OPB moment versus OPB interlink angle and IPB moment versus IPB interlink angle. For periodic OPB tension angle processes having three different OPB angle ranges with a simple irregular tension process, fatigue damage calculation reveals that OPB moment-induced fatigue damage has dominant portion to total fatigue damage. Comparative studies between two approaches also show that the conventional approach based on BV guideline predicts fatigue damage far conservatively since it assume unrealistic high stress concentration factor for tension load. Meanwhile IPB moment-induced fatigue damage is negligible compared to tension-induced fatigue damage.

각진 두 도선으로 구성된 비균일 전송선의 외부 전자파 결합 (Coupling of External Electromagnetic Fields to the Nonuniform Transmission Line Consisting of Two Angled Wires)

  • 홍성용;김세윤;나정웅
    • 한국전자파학회논문지
    • /
    • 제7권2호
    • /
    • pp.95-104
    • /
    • 1996
  • 임의의 평면파가 각진 두 도선에 입사시 관계변수들이 양단부하에 유기되는 전압에 미치는 영향을 조사하였다. 전송선 양단의 임피던스가 정합되고 입사파의 방향이 방위각과 고도각이 같을 때 유기전압이 최소가 됨을 알 수 있었다. 또한, 도선의 반경이나 도선간의 경사각이 변할 때 도표상에서 유기전압을 계산할 수 있는 방안도 제시하였다.

  • PDF

기울어진 정방형 실린더에 작용하는 유체력 (FLOW-INDUCED FORCES ON AN INCLINED SQUARE CYLINDER)

  • 윤동혁;양경수;최춘범
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.9-15
    • /
    • 2009
  • Numerical investigation has been carried out for laminar flow past an inclined square cylinder in cross freestream. In particular, inclination of a square cylinder with respect to the main flow direction can cause sudden shift of the separation points to other edges, resulting in drastic change of flow-induced forces on the cylinder such as Strouhal number (St) of vortex shedding, drag and lift forces on the cylinder, depending upon the inclination angle. Collecting all the numerical results obtained, we propose contour diagrams of drag/lift coefficients and Strouhal number on an Re-Angle plane. This study would be the first step towards understanding flow-induced forces on cylindrical structures under a strong gust of wind from the viewpoint of wind hazards.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제28권2호
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.