• 제목/요약/키워드: Induced Velocity

검색결과 1,116건 처리시간 0.025초

3차원 PIV를 활용한 초음파 진동에 의해 발생된 음향 유동을 이용한 스마트 냉각법 연구 (Study on Smart Cooling Technology by Acoustic Streaming Generated by Ultrasonic Vibration Using 3D PIV)

  • 이동렬;노병국;권기정
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1078-1088
    • /
    • 2010
  • In order to analyze the quantitative characteristics of acoustic streaming, experimental setup of 3-D stereoscopic PIV(particle imaging velocimetry) was designed and quantitative ultrasonic flow fields in the gap between the ultrasonic vibrator and heat source were measured. Utilizing acoustic streaming induced by ultrasonic vibration, surface temperature drop of cooling object was also measured. The study on smart cooling method by acoustic streaming induced by ultrasonic vibration was performed due to the empirical relations of flow pattern, average flow velocity, different gaps, and enhancement on cooling rates in the gap. Average velocity fields and maximum acoustic streaming velocity in the open gap between the stationary cylindrical heat source and ultrasonic vibrator were experimentally measured at no vibration, resonance, and non-resonance. It was clearly observed that the enhancement of cooling rates existed owing to the acoustic air flow in the gap at resonance and non-resonance induced by ultrasonic vibration. The ultrasonic wave propagating into air in the gap creates steady-state secondary eddy called acoustic streaming which enhances heat transfer from the heat source to encompassing air. The intensity of the acoustic streaming induced by ultrasonic vibration experimentally depended upon the gap between the heat source and ultrasonic vibrator. The ultrasonic vibration at resonance caused the increase of the acoustic streaming velocity and convective heat transfer augmentation when the flow fields by 3D stereoscopic PIV and temperature drop of the heat source were measured experimentally. The acoustic streaming velocity of air enhancement on cooling rates in the gap is maximal when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which is specifically 12 mm.

Analysis of vortex induced vibration frequency of super tall building based on wind tunnel tests of MDOF aero-elastic model

  • Wang, Lei;Liang, Shuguo;Song, Jie;Wang, Shuliang
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.523-536
    • /
    • 2015
  • To study the vibration frequency of super high-rise buildings in the process of vortex induced vibration (VIV), wind tunnel tests of multi-degree-of-freedom (MDOF) aero-elastic models were carried out to measure the vibration frequency of the system directly. The effects of structural damping, wind field category, mass density, reduced wind velocity ($V_r$), as well as VIV displacement on the VIV frequency were investigated systematically. It was found that the frequency drift phenomenon cannot be ignored when the building is very high and flexible. When $V_r$ is less than 8, the drift magnitude of the frequency is typically positive. When $V_r$ is close to the critical wind velocity of resonance, the frequency drift magnitude becomes negative and reaches a minimum at the critical wind velocity. When $V_r$ is larger than12, the frequency drift magnitude almost maintains a stable value that is slightly smaller than the fundamental frequency of the aero-elastic model. Furthermore, the vibration frequency does not lock in the vortex shedding frequency completely, and it can even be significantly modified by the vortex shedding frequency when the reduced wind velocity is close to 10.5.

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

탄소나노튜브의 유체유발 진동 (Flow-induced Vibration of Carbon Nanotubes Conveying Fluid)

  • 송오섭;최종운;길보람
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.242-249
    • /
    • 2008
  • In this paper, flow-induced flutter instability of cantilever carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

  • PDF

탄소나노튜브의 유체유발 진동 (Flow-induced Vibration of Carbon Nanotubes Conveying Fluid)

  • 최종운;길보람;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제18권6호
    • /
    • pp.654-662
    • /
    • 2008
  • In this paper, flow-induced flutter instability of cantilever carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

월류 시 마운드형태 방조제에 작용하는 압력과 유속 산정 (Estimation of Overflow-Induced Pressure and Velocity on a Mound-Type Sea Dike)

  • 김태형;;김성웅;최명호
    • 한국지반환경공학회 논문집
    • /
    • 제16권3호
    • /
    • pp.5-13
    • /
    • 2015
  • 해일에 의한 바닷물의 월류는 방조제 구조물에 피해를 유발시킨다. 지금까지 발생된 마운드 형태 방조제의 파괴 유형 조사 결과, 육지 쪽 마루부 파손과 선단부의 세굴이 대표적인 파괴 사례로 지목되었다. 이와 같은 파괴를 유발하는 가장 큰 원인은 월류에 의해 발생된 압력과 유속이다. 본 연구에서는 에너지 관점에서 마운드 형태 방조제에서 압력과 유속을 산정할 수 있는 이론해를 제안하고 검증하였다. 이를 위해 방조제 마루부와 선단부에 흐름을 유사정적비회전류로 보고 동심원유선이 형성된다고 가정하였다. 한계흐름조건과 베르누이정리를 이용하여 방조제 마루부와 배면 선단부에서의 작용하는 압력 및 유속 산정식을 유도하였다. 이들 식을 이용하여 동심원유선 및 월류고를 가정하여 마루부와 선단부에서 압력과 유속을 산정하였다. 그 결과 마루부에서는 부의 압력이 선단부에서는 양의 압력이 각각 크게 작용하는 것으로 나타났으며 유속에 의한 전단응력도 작용하는 것을 확인하였다. 또한 제안된 이론해의 적용 한계에 대한 고찰도 이루어졌다.

벡터제어 유도전동기의 슬립 각속도를 이용한 회전자 저항 추정 (Rotor Resistance Estimation Using Slip Angular Velocity In Vector-Controlled Induction Motor)

  • 박현수;조권재;최종우
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1308-1316
    • /
    • 2018
  • Accurate tuning of parameter is very important in vector-controlled induction motor. Among the parameters of induction motor, detuning of rotor resistance used in controller design deteriorates drive performance. This paper presents a novel rotor resistance estimation strategy using slip angular velocity in vector-controlled induction motor drives. The slip angular velocity can be calculated by two methods. Firstly, it can be induced from the rotor voltage equation. Secondly, it can be induced from the difference between synchronous angular velocity and rotor angular velocity. The first method includes the rotor resistance, while the second method dose not include this parameter. From this fact, the rotor resistance can be identified by comparing the slip angular velocities in the two methods. In the tuned states of the rotor resistance, performances of flux estimator and speed drive are discussed. The simulation and experimental results are given to verify the validity of the proposed method in various situations.

광 디스크 드라이브 내부 유동장에 관한 연구 (A Study on Flow Fields in an Optical Disc Drive)

  • 정지원;최명렬;조형희
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.224-231
    • /
    • 2005
  • The present study investigates flow characteristics in an optical disc drive (ODD). Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in a personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity component and velocity spectrum are obtained using the laser Doppler anemometry (LDA), and the flow patterns induced by rotating disc in the ODD are calculated by a commercial finite volume method at the same time. The results show that the front holes reduce flow-induced noise and the position of pickup body only affects flow near the window. Furthermore, it is possible for cooling of heat sources in the drive through measuring the flow fields under the tray. In addition, the numerical results are well matched up to the experimental results, therefore, the validation of the numerical results can be achieved. From the validation of numerical results, it is possible to predict the flow characteristics of the region where it is unable to conduct the experiment.

신형경수로1400 증기발생기 전열관의 유체유발진동 해석 (Analysis of Fluid-Induced Vibration in the APR1400 Steam Generator Tube)

  • 이광한;정대율;변성철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.84-91
    • /
    • 2003
  • Flow-Induced Vibration of steam generator tubes may result in fretting wear damage at the tube-to-support locations. KSNP(Korean Standard Nuclear Power plant) steam generators experienced fretting wear in the upper part of U-bend above the central cavity region of steam generators. This region has conditions susceptible to the flow-induced vibration, such as high flow velocity, high void fraction, and longer unsupported span. To improve its performance, APR1400 steam generator is designed with additional supports in this region to reduce unsupported span and to reduce peak velocity in the central cavity region. In this paper, we examined its performance improvement using ATHOS code. The thermal-hydraulic condition in the region of secondary side of APR1400 steam generator is obtained using the ATHOS3 code. The effective mass for modal analysis is calculated using the void fraction, enthalpy, and operating pressure information from ATHOS3 code result. With the effective mass distribution along the tube, natural frequency and mode shape is obtained using ANSYS code. Finally, stability ratios and real mean squared displacements for selected tubes of the APR1400 steam generator are computed. From these results, the current design of the APR1400 steam generator are examined.

  • PDF