• Title/Summary/Keyword: Induced Strain

Search Result 1,541, Processing Time 0.034 seconds

Multipoint Pressure-detection Sensors using Microbanding-induced Long-period Fiber Gratings (마이크로밴딩 장주기 광섬유 격자를 이용한 다중위치 압력감지 센서)

  • Sohn, Kyung-Rak;Choi, Young-Gill;Jang, Se-In;Choi, Jae-Yun;Shim, Joon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.449-454
    • /
    • 2006
  • We present a pressure sensor based on the mechanically induced long-period fiber gratings (LPFG) for detecting the multi-location strain variation. The theoretical analysis is performed using a graphic method for a weakly guiding step-index fiber. The calculated results are in good agreement with the experimental results. In this study, from the fact that the optical parameters of a single-mode fiber slightly differ from manufacturing company to manufacturing company, the multipoint pressure-detection sensor systems composed two identical LPFGs are realized. When the pressure is applied two LPFG sensors at once, the resonance peaks are separated as much as about 40 nm. These types of sensor systems are well suited as a multipoint monitoring of strain or temperature in the ship or the smart structure.

Study on Electro-Mechanical Coupling Effect of EAPap Actuator

  • Zhao, Lijie;Li, Yuanxie;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.640-643
    • /
    • 2006
  • In this paper, electro-mechanical coupling of cellulose-based Electro-Active Paper (EAPap) actuator is investigated by measuring induced strain and mechanical properties with and without electric excitation. The maximum induced in-plane strain is measured at the orientation angle of 45? samples. The elastic modulus and strength of EAPap are increased with electric excitation and the orientation angle of $45^{\circ}$ samples shows the largest increment of mechanical properties. From the observations, shear piezoelectricity is considered as the major piezoelectric mode of EAPap.

  • PDF

Field-induced Strain and Polarization Switching Mechanisms in Ba-modified PMN-PT Ceramics (Ba 변성 PMN-PT계 강유전체의 전계유기변위와 분극특성)

  • 장명철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.12-20
    • /
    • 2000
  • Dielectric property of Ba-modified 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 ceramics having compositions near the morphotropic phase boundary was investigated. For the specimens having Ba contents between 0 and 20 at%, the average transition temperature was decreased linearly with increasing Ba contents and the degree of hysteresis was also decreased with increasing Ba contents. The maximum dielectric constants (K), electric field induced polarization(P) and electrically-induced strain(S) were found to exihibit a maximum value at∼3 at% of Ba. The increase of S and the decrease of hysteresis by minor additions of Ba impurities indicated the development of new higher perfomance actuator materials. The composition of Ba-PMN-PT (10/65/35) may be appropriate for capacitor materials because of low hysteresis and high polarization.

  • PDF

Noncontact strain sensing in cement-based material using laser-induced fluorescence from nanotube-based skin

  • Meng, Wei;Bachilo, Sergei M.;Parol, Jafarali;Weisman, R. Bruce;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.259-270
    • /
    • 2022
  • This study explores the use of the recently developed "strain-sensing smart skin" (S4) method for noncontact strain measurements on cement-based samples. S4 sensors are single-wall carbon nanotubes dilutely embedded in thin polymer films. Strains transmitted to the nanotubes cause systematic shifts in their near-infrared fluorescence spectra, which are analyzed to deduce local strain values. It is found that with cement-based materials, this method is hampered by spectral interference from structured near-infrared cement luminescence. However, application of an opaque blocking layer between the specimen surface and the nanotube sensing film enables interference-free strain measurements. Tests were performed on cement, mortar, and concrete specimens with such modified S4 coatings. When specimens were subjected to uniaxial compressive stress, the spectral peak separations varied linearly and predictably with induced strain. These results demonstrate that S4 is a promising emerging technology for measuring strains down to ca. 30 𝜇𝜀 in concrete structures.

Optical power splitters and optical intensity modulators utilizing Strain-Optic Waveguides of LiNbO3 (LiNbO3의 스트레인광학형 광도파로를 이용한 세기 광 변조기와 광 파워 분배기)

  • 정홍식
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2003
  • Fabrication process of strain-induced channel waveguides in $LiNbO_3$ was developed using strain-optic effect and compressional strain due to ~1.4 $\mu\textrm{m}$ surface Mo/Pt metal film. Characterization of the channel waveguides revealed a single transverse and depth mode in both TE and TM polarizations. Measurements showed total insertion loss of 6.2 and 7.7 ㏈/cm for TM and TE polarizations. respectively. Electro-optic intensity modulators with 11 mm long electrode length and 21 $\mu\textrm{m}$ electrode gap at $\lambda$ = 1.15 ${\mu}{\textrm}{m}$have been produced in $LiNbO_3$ substrates using strain-induced channel waveguides. Modulation depth of 100% at $\pi$-radian voltage of 16.1V has been demonstrated. Also, 1$\times$2 on/off power splitters at $\lambda$ = 0.63 $\mu\textrm{m}$ have been produced using strain-induced channel waveguides. On/off voltage of $\pm$ 25V has been demonstrated.

Analysis of Recrystallization and Grain Growth Induced Plasticity (재결정과 결정성장 유기 소성현상의 해석)

  • Kim, Se-Jong;Suh, Dong-Woo;Kim, Sung-Jun;Han, Heung-Nam
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.107-110
    • /
    • 2007
  • It has been reported that the permanent strain could happen during recrystallization and grain growth even under the externally applied stress which is much lower than yield stress. In this study, we performed dilatometry experiments under the various compressive stresses and measured the amount of recrystallization and grain growth induced permanent strain. A new constitutive equation based on the concept of boundary migration induced plasticity was suggested to describe the recrystallization and grain growth induced plasticity. This equation was verified by comparing the calculated values with dilatometric experimental data under the various compressive stresses.

  • PDF

Strain measurement of optical fiber embedded in the reinfoned retaining wall used in the railway (광섬유가 삽입된 철도용 보강토 옹벽의 초기 변형을 측정)

  • Yoon, Hyuk-Jin;Song, Kwang-Yong;Kim, Dae-Sang;Kim, Ki-Hwan;Kim, Jung-Seok;Kwon, Tae-Soo;Na, Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1509-1513
    • /
    • 2009
  • The research of applying reinforced retaining wall due to support the land pressure that given from train's load has been accomplished actively in domestic area. After the retaining wall has been installed, the collapse or partial destruction that generated by effect of train's vibration and repetitive load of train may be induced. Accordingly in the period of using this, the sufficient durability should be guaranteed and years of durability are one hundred and as these are longer than road structure's, the technique that introduced to wall and monitor the long-term strain is necessary. In this paper, the optical fibre is induced vertically to the reinforced retaining wall and after the subsistence of optical fibre is confirmed, the early strain that applied to optical fibre after insertion is monitored. Before and after the concrete placing, damage feasibility of optical fibre is measured by using OTDR(Optical Time Domain Reflectometer) and after concrete is cultivated, the early strain induced to optical fibre is measured by application of BOCDA (Brillouin Correlation Domain Analysis) system.

  • PDF

Ocular Lesions Induced Experimentally by Very Virulent Strain of Marek′s Disease Virus in Chickens (닭의 마렉병 바이러스 강독주 실험접종에 의한 안구병변)

  • Cho, Kyoung-Oh
    • Korean Journal of Veterinary Pathology
    • /
    • v.5 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • Ocular lesions induced in 40 specific-pathogen-free Marek's disease (MD) resistant chicks by inoculation at 1 day of age with very virulent strain of Marek's disease virus (WV) were pathologically examined. Grossly,24/40 (60%) chicks had white gel-like materials in the vitreous body, whereas thickening and discoloration of iris (gray eye) were not observed. Microscopically, characteristic ocular MD lesions were observed in choroid (27/40), ciliary (30/40) and iris (23/40) in which small focal inflammatory to diffuse neoplastic Iymphoid cells were infiltrated. Five out of 40 MDV-inoculated birds revealed necrotizing Iymphomas in choroid. These lesions consisted of necrotic and degenerating Iymphoblasts accompanied by intranuclear inclusion body. There was retinal atrophy and necrosis with inclusion body detected in necrotic ganglion, inner or outer nuclear and infiltrated Iymphoblast cells. Conjunctiva showed lymphoid cell infiltration in 29/40 chicks inoculated with MDV, Vitreous body exhibited mild to severe exudation of eosinophilic proteinaceous material in 24/40 chicks. These lesions were associated with Iymphoid cell infutration, edema and fibrosis of choroid. Pecten (7/40) and optic nerve (13/40) were infiltrated usually mildly with Iymphoid cells. From these results, very virulent strain, Md/5 of MDV caused high incidence of ocular lesions in MD resistant chicks. In addition, Md/5 induced exudation of proteinaceous material into the vitreous body and fibrosis of choroid. Necrotizing ocular Iymphoma lesions in choroid is the first report in the MD literature.

  • PDF

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels (고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향)

  • Lee, Junghoon;Lee, Sunghak;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

Response of a laterally loaded pile group due to cyclic loading in clay

  • Shi, Jiangwei;Zhang, Yuting;Chen, Long;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • In offshore engineering, lateral cyclic loading may induce excessive lateral movement and bending strain in pile foundations. Previous studies mainly focused on deformation mechanisms of single piles due to lateral cyclic loading. In this paper, centrifuge model tests were conducted to investigate the response of a $2{\times}2$ pile group due to lateral cyclic loading in clay. After applying each loading-unloading cycle, the pile group cannot move back to its original location. It implies that residual movement and bending strain are induced in the pile group. This is because cyclic loading induces plastic deformation in the soil surrounding the piles. As the cyclic load increases from 62.5 to 375 kN, the ratio of the residual to the maximum pile head movements varies from 0.30 to 0.84. Moreover, the ratio of the residual to the maximum bending strains induced in the piles is in a range of 0.23 to 0.82. The bending strain induced in the front pile is up to 3.2 times as large as that in the rear pile. Thus, much more protection measures should be applied to the front piles to ensure the serviceability and safety of pile foundations.