• 제목/요약/키워드: Induced Drag

검색결과 166건 처리시간 0.026초

Aerodynamic performance evaluation of different cable-stayed bridges with composite decks

  • Zhou, Rui;Ge, Yaojun;Yang, Yongxin;Du, Yanliang;Zhang, Lihai
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.699-713
    • /
    • 2020
  • The aerodynamic performance of long-span cable-stayed bridges is much dependent on its geometrical configuration and countermeasure strategies. In present study, the aerodynamic performance of three composite cable-stayed bridges with different tower configurations and passive aerodynamic countermeasure strategies is systematically investigated by conducting a series of wind tunnel tests in conjunction with theoretical analysis. The structural characteristics of three composite bridges were firstly introduced, and then their stationary aerodynamic performance and wind-vibration performance (i.e., flutter performance, VIV performance and buffeting responses) were analyzed, respectively. The results show that the bridge with three symmetric towers (i.e., Bridge I) has the lowest natural frequencies among the three bridges, while the bridge with two symmetric towers (i.e., Bridge II) has the highest natural frequencies. Furthermore, the Bridge II has better stationary aerodynamic performance compared to two other bridges due to its relatively large drag force and lift moment coefficients, and the improvement in stationary aerodynamic performance resulting from the application of different countermeasures is limited. In contrast, it demonstrates that the application of both downward vertical central stabilizers (UDVCS) and horizontal guide plates (HGP) could potentially significantly improve the flutter and vortex-induced vibration (VIV) performance of the bridge with two asymmetric towers (i.e., Bridge III), while the combination of vertical interquartile stabilizers (VIS) and airflow-depressing boards (ADB) has the capacity of improving the VIV performance of Bridge II.

저속 횡 이동하는 선박의 선체에 작용하는 유체력에 관한 연구 (A Study of Hydrodynamic Forces Acting on a Ship Hull Under Lateral Low Speed Motion)

  • 이윤석;김순갑
    • 한국항해학회지
    • /
    • 제23권2호
    • /
    • pp.29-42
    • /
    • 1999
  • An accurate method of estimating ship maneuverability needs to be developed to evaluate precisely and improve the maneuverability of ships according to the water depth. In order to estimate maneuverability by a mathematical model. The hydrodynamic forces acting on a ship hull and the flow field around the ship in maneuvering motion need to be estimated. The ship speed new the berth is very low and the fluid flow around a ship hull is unsteady. So, the transient fluid motion should be considered to estimate the drag force acting on the ship hull. In the low speed and short time lateral motion, the vorticity is created by the body and grow up in the acceleration stage and the velocity induced by the vorticity affect to the body in deceleration stage. For this kind of problem, CFD is considered as a goof tool to understand the phenomena. In this paper, the 2D CFD code is used for basic consideration of the phenomena to solve the flow in the cross section of the ship considering the ship is slender and the water depth is large enough. The flow fields Added and hydrodynamic forces for the some prescribed motions are computed and compared with the preliminary experiment results. The comparison of the force with measurement is shown a fairly good agreement in tendency. The 3D Potential Calculation based on the Hess & Smith Theory is employed to predict the surge, sway added mass and yaw added moment of inertia of hydrodynamic coefficients for M/V ESSO OSAKA according to the water depth. The results are also compared with experimental data. Finally, the sway added mass of hydrodynamic coefficients for T/S HANNARA is suggested in each water depth.

  • PDF

String을 이용한 원형실린더 주위의 수평력 감소에 관한 연구 (Experimental Study on Reducing Lateral Force on Circular Cylinder Using Strings)

  • 백동일;조효제;이민준;임재환;이태경;김재희;오태원
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.237-243
    • /
    • 2018
  • Recently, it was predicted that the size of offshore markets will grow as gas prices edge up. This paper presents experimental results for using strings as a suppression device on a circular cylinder and discusses the various data. A test model was used to investigate the role of strings by varying the thickness of the strings used to suppress a cylinder's lateral force taking into account the effect of turbulence promoted. A substantial amount of experimental data were taken from experiments performed on cylinders at Reynolds number up to a maximum value of $10^5$. The suppression of vortex shedding and a lateral force reduction of up to 70% were observed for the cylinder with strings.

Investigation on spanwise coherence of buffeting forces acting on bridges with bluff body decks

  • Zhou, Qi;Zhu, Ledong;Zhao, Chuangliang;Ren, Pengjie
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.181-198
    • /
    • 2020
  • In the traditional buffeting response analysis method, the spanwise incomplete correlation of buffeting forces is always assumed to be same as that of the incident wind turbulence and the action of the signature turbulence is ignored. In this paper, three typical bridge decks usually adopted in the real bridge engineering, a single flat box deck, a central slotted box deck and a two-separated paralleled box deck, were employed as the investigated objects. The wind induced pressure on these bridge decks were measured via a series of wind tunnel pressure tests of the sectional models. The influences of the wind speed in the tests, the angle of attack, the turbulence intensity and the characteristic distance were taken into account and discussed. The spanwise root coherence of buffeting forces was also compared with that of the incidence turbulence. The signature turbulence effect on the spanwise root coherence function was decomposed and explained by a new empirical method with a double-variable model. Finally, the formula of a sum of rational fractions that accounted for the signature turbulence effect was proposed in order to fit the results of the spanwise root coherence function. The results show that, the spanwise root coherence of the drag force agrees with that of incidence turbulence in some range of the reduced frequency but disagree in the mostly reduced frequency. The spanwise root coherence of the lift force and the torsional moment is much larger than that of the incidence turbulence. The influences of the wind speed and the angle of attack are slight, and they can be ignored in the wind tunnel test. The spanwise coherence function often involves several narrow peaks due to the signature turbulence effect in the high reduced frequency zone. The spanwise coherence function is related to the spanwise separation distance and the spanwise integral length scales, and the signature turbulence effect is related to the deck-width-related reduced frequency.

선회중 전복한 저건현 내항 탱커의 복원성에 관한 연구 (2) -갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사 - (A Study on the Stability of a Low Freeboard Coastwise Tanker Capsized in Turning (2) -Experimental Examination of the Outward Heel Moment Induced by Flooding of Seawater onto the Deck-)

  • 이윤석;김철승;이상민
    • 한국항해항만학회지
    • /
    • 제27권5호
    • /
    • pp.465-471
    • /
    • 2003
  • 내항 탱커가 비교적 정온한 해역에서 타선을 피하기 위해 대각도 조타론 행한 결과, 선회 중에 전복하는 사고가 발생하였다. 저자들은 전 논문에서 비중량이 큰 액체화물의 자유표면영향에 의한 중심상승과 전진 항해 중에 발생하는 선체 침하와 이로 인하여 생기는 선체 트림의 변화 때문에 발생하는 복원력 감소를 고려하여 사고선박의 복원력 곡선을 계산하였다. 본 논문에서는 먼저 전복사고를 당한 선박의 모형선을 제작하여 자항 선회실험을 실시하고 전복선박의 정상 선회시의 선회반경, 편류각 및 선속을 계측한다. 그리고 자항 선회실험을 통하여 얻은 선회반경, 선속 및 횡 편류각을 기초로 하여 각 경사각에 따른 측 압력과 경사 모멘트에 관한 실험을 실시하고, 갑판상 해수 침입이 측 압력과 경사 모멘트에 미치는 영향에 대해서 파악한다. 마지막으로 선회시 해수 침입으로 인해 발생하는 외측 경사 모멘트와 측압 중심의 변화론 조사함으로써 전복사고가 발생한 저건현 내항 탱커의 복원성에 대하여 검토를 하였다.

아음속 수직분사제트에서 분사각도 영향에 대한 분무특성 연구 (Effects of Angled Injection on the Spray Characteristics of Liquid Jets in Subsonic Crossflow)

  • 김민기;송진관;이장수;윤영빈
    • 한국항공우주학회지
    • /
    • 제37권2호
    • /
    • pp.166-174
    • /
    • 2009
  • 본 연구에서는 횡단류 아음속유동장에서 연료가 여러 분사각도를 가지고 수직 분무시 나타나는 액주영역의 궤적과 분열지점에 관한 연구를 수행하였다. 직접 사진촬영 방법과 평면레이저유도형광(PLLIF) 기법으로 정방향 분사각도의 분무에서 액주영역의 궤적식과 분열지점까지의 거리에 대한 경험식을 도출하여 기존 연구결과와 비교 분석하고 대향분사의 액주 궤적식과 분열지점까지의 거리에 대한 경험식을 도출하였다. 실험을 통하여 액주영역의 궤적과 분열지점까지의 거리는 분사차압, 공기의 유속, 인젝터 지름 크기, 분사각도에 의하여 결정됨을 확인하였다.

Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin
    • Wind and Structures
    • /
    • 제16권6호
    • /
    • pp.579-601
    • /
    • 2013
  • Interference effects are of considerable concern for group hyperboloidal cooling towers, but evaluation methods and results are different from each other because of the insufficient understanding on the structure behavior. Therefore, the mechanical performance of hyperboloidal cooling tower shell under wind loads was illustrated according to some basic properties drawn from horizontal rings and cantilever beams. The hyperboloidal cooling tower shell can be regarded as the coupling of horizontal rings and meridian cantilever beams, and this perception is beneficial for understanding the mechanical performance under wind loads. Afterwards, the mean external latitude wind pressure distribution, CP(${\theta}$), was artificially adjusted to pursue the relationship between different CP(${\theta}$) and wind-induced responses. It was found that the maximum responses in hyperboloidal cooling tower shell are primarily dominated by the non-uniformity of CP(${\theta}$) but not the local pressure amplitude CP or overall resistance/drag coefficient CD. In all the internal forces, the maximum amplitude of meridian axial tension shows remarkable sensitivity to the variation of CP(${\theta}$) and it's also the controlling force in structure design, so it was selected as an indicator to evaluate the influence of CP(${\theta}$) on responses. Based on its sensitivity to different adjustment parameters of CP(${\theta}$), an comprehensive response influence factor, RIF, was deduced to assess the meridian axial tension for arbitrary CP(${\theta}$).

인간동력항공기의 붙임각 변화에 따른 날개 끝단 굽힘변위 최소화 연구 (Minimization of the Bending Deflection of the Human-powered Aircraft Wing Induced by Change of an Incidence Angle)

  • 이창배;임병욱;주현식;신상준
    • 한국항공우주학회지
    • /
    • 제47권2호
    • /
    • pp.98-106
    • /
    • 2019
  • 인간동력항공기의 날개는 고세장비의 형상을 가지고 있어 큰 굽힘변위가 발생한다. 본 논문에서는 고세장비 형상의 날개가 가지는 구조적인 한계를 붙임각을 변경함으로써 개선하고자 하였다. 날개의 익형 및 단면형상을 고정시킨 후 동일 수준의 양력 발생을 만족시킨다는 전제하에 붙임각의 변경에 따른 날개 끝단의 굽힘변위 변화 경향을 관측하였다. 이를 위해 유한날개의 양력, 항력, 모멘트 하중을 날개의 각 섹션에 분포시켰다. 그리고 EDISON의 "geometrically exact beam (GEB)" 프로그램과 "Variational Asymptotic Beam Sectional Analysis (VABS)" 단면해석 프로그램을 사용하여 변경된 설계안의 구조 안전도를 평가하였다. 또한, 다물체 동역학 해석 프로그램 DYMORE를 이용하여 본 논문에서 예측한 날개의 끝단 변위 예측값을 비교 검증하였다.

Numerical study on Reynolds number effects on the aerodynamic characteristics of a twin-box girder

  • Laima, Shujin;Wu, Buchen;Jiang, Chao;Chen, Wenli;Li, Hui
    • Wind and Structures
    • /
    • 제28권5호
    • /
    • pp.285-298
    • /
    • 2019
  • For super long-span bridges, the aerodynamic forces induced by the flow passing the box girder should be considered carefully. And the Reynolds number sensitively of aerodynamic characteristics is one of considerable issue. In the study, a numerical study on the Reynolds number sensitivity of aerodynamic characteristic (flow pattern, pressure distribution and aerodynamic forces) of a twin-box girder were carried out using large eddy simulation (LES) with the dynamic Smagorinsky-Lilly subgrid model. The results show that the aerodynamic characteristics have strong correlation with the Reynolds number. At the leading edge, the flow experiences attachment, departure, and reattachment stages accompanying by the laminar transition into turbulence, causing pressure plateaus to form on the surface, and the pressure plateaus gradually shrinks. Around the gap, attributing that the flow experiences stages of laminar cavity flow, the wake with alternate shedding vortices, and turbulent cavity flow in sequence with an increase in the Reynolds number, the pressures around the gap vary greatly with the Reynold number. At the trailing edge, the pressure gradually recovers as the flow transits to turbulence (the flow undergoes wake instability, shear layer transition-reattachment station), In addition, at relative high Reynolds numbers, the drag force almost does not change, however, the lift force coefficient gradually decreases with an increase in Reynolds number.

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • 제34권4호
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.