DOI QR코드

DOI QR Code

아음속 수직분사제트에서 분사각도 영향에 대한 분무특성 연구

Effects of Angled Injection on the Spray Characteristics of Liquid Jets in Subsonic Crossflow

  • 김민기 (서울대학교 기계항공공학부 대학원) ;
  • 송진관 (서울대학교 기계항공공학부 대학원) ;
  • 이장수 (서울대학교 기계항공공학부 대학원) ;
  • 윤영빈 (서울대학교 기계항공공학부 항공우주신기술연구소(IAAT))
  • 발행 : 2009.02.01

초록

본 연구에서는 횡단류 아음속유동장에서 연료가 여러 분사각도를 가지고 수직 분무시 나타나는 액주영역의 궤적과 분열지점에 관한 연구를 수행하였다. 직접 사진촬영 방법과 평면레이저유도형광(PLLIF) 기법으로 정방향 분사각도의 분무에서 액주영역의 궤적식과 분열지점까지의 거리에 대한 경험식을 도출하여 기존 연구결과와 비교 분석하고 대향분사의 액주 궤적식과 분열지점까지의 거리에 대한 경험식을 도출하였다. 실험을 통하여 액주영역의 궤적과 분열지점까지의 거리는 분사차압, 공기의 유속, 인젝터 지름 크기, 분사각도에 의하여 결정됨을 확인하였다.

The liquid column trajectory and column breakup length characteristics have been experimentally studied in angled jets injected into subsonic crossflow. Pulsed shadowgraph photography and Planar Liquid Laser Induced Fluorescence measurements were used to determine the angled effects. And the main objectives of this research are to get a empirical formula of liquid column trajectory and breakup length with below the $90^{\circ}$ degree injection angle conditions, and were compared with previous results. It was also found that the empirical formula, which reversed injection conditions of air stream. As the result, This has been shown that liquid column trajectories and column breakup length were spatially dependent on various injection angle, normalized injector exit diameter, air-stream and fuel injection velocity. Furthermore, the empirical formula of liquid column trajectories and breakup length has been some different of drag coefficient results between normal angled injection and reversed injection in subsonic crossflow.

키워드

참고문헌

  1. Schetz.J.A . and Padhye.A., "Penetration and Breakup of Liquids in Subsonic Airstreams", AIAA Journal, 15, 1977, 1385-1390. https://doi.org/10.2514/3.60805
  2. Scherz, J. A, Kush, E. A, Joshi, P. B., "Wave Phenomena in Liquid Jet Breakup in a Supersonic Crossflow", AlAA Journal, Vol. 18, No.7, 1980, pp. 774-778.
  3. Wu, P.-K., Kirkendall, K. A, Fuller, R P., and Nejad, A S., "Breakup Processes of Liquid Jets in Subsonic Crossflows", Journal of Propulsion and Power, Vol. 13, No. 1, 1997, pp. 64-73. https://doi.org/10.2514/2.5151
  4. Nguyen, T. T., and Karagozian, A R "Liquid Fuel Jet in Subsonic Crossflow", Journal of Propulsion and Power, Vol. 8, No. 1, 1992, pp. 21-29. https://doi.org/10.2514/3.23437
  5. Tamaki. N, Shimizu. M, Nishida. K, and Hiroyasu . H, "Effects of Cavitation and Internal Flow on Atomization of a Liquid Jet", Atomization and Sprays, Vol.8, 1998, pp. 179-197. https://doi.org/10.1615/AtomizSpr.v8.i2.30
  6. Fuller, R P., Wu, P.-K., Kirkendall, K. A, and Nejad, A. S., "Effects of Injection Angle on Atomization of Liquid Jets in Transverse Airflow", AIAA Journal, Vol. 38, No. 1, 2000, pp. 64-72.
  7. Costa, M., Melo, M. J., Sousa, M. M., and Levy, Y., "Spray Characteristics of Angled Liquid Injection into Subsonic Crossflow", AIAA Journal, Vol. 44, No.3, 2006, pp. 646-653. https://doi.org/10.2514/1.10887
  8. Vennard, J., Elementary Fluid Mechanics, Wiley, New York, 3rd ed., pp. 216-219.
  9. Lefebvre. A H., Atomization and Sprays, Hemisphere Publishing Corp. Philadelphia, 1989.
  10. Chigier.N, Reitz,RD., Regimes of Jet Breakup and Breakup Mechanisms, Spray Atomization and Drop Burning Phenomena Vol. 1, edited by K. Kuo
  11. lnamura, T. and Nagai, N., "Spray Characteristics of Liquid Jet Traversing Subsonic Airstream", Journal of Propulsion and Power, Vol. 13, No.2, 1997, pp. 250-256. https://doi.org/10.2514/2.5156
  12. Wu. P. K., Kirkendall, K. A, Fuller, R. P., and Najad, A. S., "Spray Structures of Liquid Jets Atomized in Subsonic Crossflows'', Journal of Propulsion and Power, Vol.14, No.2, 1998, pp. 173-182. https://doi.org/10.2514/2.5283
  13. Inamura, T., "Trajectory of a Liquid Jet Traversing Subsonic Airstreams", Journal of Propulsion and Power, Vol. 16, No.1, 2000, pp. 155-157. https://doi.org/10.2514/2.5547