• Title/Summary/Keyword: Induced Current Density

Search Result 338, Processing Time 0.029 seconds

Lifetime Estimation of Amplifier IC due to Electromigration failure (Electromigration 고장에 의한 Amplifier IC의 수명 예측)

  • Lee, Ho-Young;Chang, Mi-Soon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1265-1270
    • /
    • 2008
  • Electromigration is a one of a critical failure mechanism in microelectronic devices. Minimizing the thin film interconnections in microelectronic devices make high current densities at electrrical line. Under high current densities, an electromigration becomes critical problems in a microelectronic device. This phenomena under DC conditions was investigated with high temperature. The current density of 1.5MA/cm2 was stressed in interconnections under DC condition, and temperature condition $150^{\circ}C,\;175^{\circ}C,\;200^{\circ}C$. By increasing of thin film interconections, microelectronic devices durability is decreased and it gets more restriction by temperature. Electromigration makes electronic open by void induced, and hillock induced makes electronic short state.

  • PDF

Measurement of Magnetic Flux and Induced Current in Magnetic Stimulation for Urinary Incontinence Treatment (요실금 치료용 자기 자극기의 자속밀도 및 유도전류 측정)

  • Han, Byung-Hee;Choi, Kyung-Moo;Cho, Min-Hyoung;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.318-326
    • /
    • 2009
  • A simple method for measuring magnetic flux and induced current in magnetic nerve stimulation for urinary incontinence treatment is proposed. Unlike electric nerve stimulation, direct measurement of the induced current in magnetic nerve stimulation is impossible. Since induced currents stimulate nerves or muscles in magnetic nerve stimulation, measuring induced current is very important in validating stimulation efficacy and securing safety. The magnetic flux measuring system is composed of 6 layers with pick-up coils of 7 by 7 in each layer, and the induced current measuring system is composed of 6 layers with 7 concentric circular coils in each layer. The proposed method can be used in the design or performance test of a magnetic nerve stimulator for many clinical applications such as urinary incontinence treatment, activation of peripheral nerves, and transcranial magnetic stimulation.

The Influence of Electrolytic Condition on Tunnel Etching and Capacitance Gain of High purity Aluminium Foil on capacitor (전해조건이 고순도 알루미늄 박 콘덴서의 터널에칭과 정전용량에 미치는 영향)

  • 이재운;이병우;김용현;이광학;김흥식
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.44-56
    • /
    • 1997
  • Influence of electrochemical etching conditions on capacitance gain of aluminium electrolytic on capacitor foil has been investigated by etching cubic textured high purity aluminum foil in dilute hydrochloric acid. Uniformly distributed etch pit tunnels on aluminum surface have been obtained by pretreatment aluminium foil in 10% NaOH solution for 5 minutes followed by electrochemical etching. Electrostatic capacitance of etched aluminium foil anodized to high voltage increased with the increase of current density, total charge, temperature and concentration of electrolyte up to maximum CV-value and then deceased. Election optical observation of the etched foil revealed that the density of etch of etch pits increased with the increase of current density and concentration of electrolyte. this increase of etch pit density enlarged of the increase of capacitance. However, abnormal high current density and high electrolyte concentration induced the local dissolution of the foil surface which resulted the decrease of foil capacitance.

  • PDF

Seasonal Variation of Kinetic and Potential Energy of Residual Flow Field in Suyoung Bay, Korea (한국수영만에서 잔차류장의 운동 .위치에너지의 계절변화)

  • 김동선;유철웅
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.313-322
    • /
    • 1997
  • In order to study the seasonal variation of kinetic and potential energy of residual flow field In Suyoung Bay of Korea, we calculated Its energy budget and compared It with the tidal energy there. The potential energy shows the large value In winter and spring and the small one In summer and early autumn when the density stratification Is developed. The kinetic energy of residual flow varies seasonally and the seasonally averaged kinetic energy of residual flow per unit area is 6.4$\times$$10^{-4}ergs s^{-1}cm^{-}2$. It Is mainly governed by the density-driven current with the exception of that In November when the kinetic energy of tide-induced residual current is larger than those of density-driven current and wind-driven current. An averaged traction of the kinetic energy of tide-Induced residual current, wind-driven current and density-driven current, which are the major components of residual flow, is 29.1%, 3.4%, 67.5%, respectively, to the kinetic energy of residual flow, The fraction of kinetic energy of residual flow, potential energy and tidal energy per unit area is 1.0 : 6.7$\times$$10^3$: 8.2$\times$$10^4$ respectively.

  • PDF

Numerical simulation of residual currents by diagnostic multi-level model in Kwangyang Bay, Korea (다층 진단 모델에 의한 광양만의 잔차류 수치 실험)

  • 추효상;이병걸;이규형
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.41-56
    • /
    • 2002
  • In order to estimate the quantitative roles of the tide induced residual currents, density currents and wind driven currents on the residual currents in Kwangynag Bay Korea, numerical experiments with a diagnostic multi-level model were carried out. Density currents were calculated from the temperature and salinity data observed in January, May, August and November 1998. Anti-clockwise circulations are formed at the western inner part of the bay, the location from the east of Myodo Is. to the south of POSCO Co. and the place between Yeosu peninsula and Namhae Is. from the calculation results of the tide induced residual currents. Velocities of the density currents are less than 3cm/s at the western inner part of the bay and about 5cm/s at the southern entrance of the bay. Density currents get strong in summer and weak in autumn. Wind driven currents at the surface layer flow in the directions of the given winds which are the daily mean winds when the temperature and salinity observations are carried out. In the middle and lower layers, however the wind driven currents flow in the opposite direction to the surface currents as supplementary currents. The surface wind driven currents are greater than the tide induced residual currents or the density currents. The calculated residual currents including the tide induced residual currents, density currents and wind driven currents agree with the results of the current observations approximately. In the Bay, the wind driven currents affect on the residual currents greatestly and tide induced residual currents and density currents do in the second place and the third place.

Characteristics of the Current Density Induced Inside a Worker Near a Neutral Ground Reactor (중성점 접지 리액터 주변 작업자의 인체내부 유도전류밀도 특성)

  • Min, Suk-Won;Lee, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1856-1861
    • /
    • 2010
  • To reduce a high fault current, neutral ground reactors (NGR) were installed in the Korean substation. Current with several harmonic components flows in a NGR due to load unbalance in normal steady state and magnetic fields with several harmonic components are also generated around a NGR. As results of study, we found magnetic fields around a NGR in Korean substation included two harmonics, 180Hz and 540Hz. Magnetic fields of 180 Hz increased 3 times more current density inside a worker near a NGR than same magnitude magnetic fields of 60 Hz. We know a worker near a NGR may not meet ICNIRP guideline of 10(mA/$m^2$) due to several harmonic components.

Analysis of Induced-Currant density Distribution in Spherical Human Model (자계에 의한 구형 인체모델 내부의 유도전류밀도 분포 해석)

  • Yeo, H.Ch.;Kim, B.K.;Park, S.H.;Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.458-458
    • /
    • 2003
  • In this study the induced-current density distributions in spherical human model by the magnetic field from electric power lines were analysed with visualization and also the effects of phase difference between components of magneto field were investigated.

  • PDF

Effect of Applied Current Density on the Corrosion Damage of Steel with Accelerated Electrochemical Test (전기화학적 가속 부식 평가법에서 강재의 부식 손상에 미치는 인가전류밀도의 영향)

  • Lee, Jung-Hyung;Park, Il-Cho;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.423-430
    • /
    • 2016
  • In this study, we investigated the corrosion damage characteristics of steel for offshore wind turbine tower substructure using an accelerated electrochemical test. The galvanostatic corrosion test method was employed with a conventional 3 electrode cell in natural sea water, and the steel specimen was served as a working electrode to induce corrosion in an accelerated manner. Surface and cross-sectional image of the damaged area were obtained by optical microscope and scanning electron microscope. The weight of the specimens was measured to determine the gravimetric change before and after corrosion test. The result revealed that the steel tended to suffer uniform corrosion rather than localized corrosion due to active dissolution reaction under the constant current regime. With increasing galvanostatic current density, the damage depth and surface roughness of surface was increased, showing approximately 25 times difference in damage depth between the lowest current density ($1mA/cm^2$) and the highest current density ($200mA/cm^2$). The gravimetric observation showed that the weight loss was proportionally increased with increment of current density that has 75 times different according by experimental conditions. Consequently, uniform corrosion of the steel specimen was conveniently induced by the electrochemically accelerated corrosion technique, and it was possible to control the extent of the corrosion damage by varying the current density.

The Fast Convergent Solution of E-Polarized Reflection Coefficient by a Perfect Conductor Strip Grating (완전도체 스트립 회절격자에 의한 E-분극 반사계수의 급속한 수염해)

  • Uei-Joong Yoon
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.1
    • /
    • pp.10-16
    • /
    • 1995
  • The E-polarized scattering problems by a perfect conductor strip grating are analyzed by the method of moments. For an E-polarization the induced surface current density is expected to blow up at the strip both edges. Then the induced surface current density on the strip is expanded in a series of multiplication of Ultraspherical ploynomials with zeroth order and functions with appropriate edge boundary condition. The numerical results for current density and reflection cofficient are compared with other functions, it is shown that numerical results better improves the convergence of the moment method soulutions with general incident angles than the existing several other functions. The sharp variation points in the magnitude of geometric-optical reflection coefficient can be moved by varying the incident angle, strip width, and strip spacing.

  • PDF

Analyses on Current Densities Induced Inside a Worker Using AC Arc Welder (교류 아크용접기를 사용하는 작업자의 인체 유도전류밀도 해석)

  • Park, Jun-Hyeong;Min, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1410-1411
    • /
    • 2007
  • This paper analyses current densities induced inside a worker using AC arc welder. Applying the boundary element method, we calculate current densities induced in organs inside a worker in case he was located at 1[cm], 3[cm], 5[cm], 10[cm], 15[cm], 20[cm] far from a power cable of AC arc welder. As results of study, we find a maximum current density induces at a heart surface and may be higher than 10[$mA/m^2$] of ICNIRP guideline if he works within 15[cm] from a power cable.

  • PDF