• Title/Summary/Keyword: Induced Current Density

Search Result 338, Processing Time 0.033 seconds

Analysis on Current Density Induced Inside Body of Hot-Line Worker for 765kV Double Circuit Transmission Line (765 kV 2회선 송전선 활선 작업자 인체내부 유도전류 밀도 해석)

  • Song, Ki-Hyun;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.231-238
    • /
    • 2006
  • This paper analysed the induced current density inside human body of hot-line worker for 765kV double circuit transmission line according to locations of human body. Human model was composed of several organs and other parts, whose shapes were expressed by spheroids or cylinders. Organs such as the brain, heart, lungs, liver and intestines were taken into account. Applying the 3 dimensional boundary element method, we calculated induced current density in case a worker was located inside and outside a lowest phase of 765 kV transmission line in which a 60% current of maximum load flowed. As results of study, we found a maximum induced current density in all organs was less than $10mA/m^2$ when a wonder was outside. As one in brain and heart was higher than $10mA/m^2$ when a worker was inside, we propose a method for lowering current density.

Analysis on Induced Current Density by Electric Field of Human under the 765 kV Transmission Line Considering Permittivity and Conductivity (유전율 및 도전율을 고려한 765kV 송전선하의 전계에 의한 인체내부 유도 전류밀도 해석)

  • 민석원;송기현;양광호;주문노
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.461-465
    • /
    • 2004
  • This paper analysed the induced current density by electric field of human body under the 765 kV transmission line considering permittivity and conductivity. As permittivity of human body is very high as $10^6$ at 60 Hz, special numerical computation technique in Surface Charge Method(SCM) for composite media with extremely different properties is applied to reduce calculation error of induced current density and electric field inside the human body. Calculation results show that the average of the induced current density inside human body is about 3mA/$m^2$, which is less than ICNIRP criterion (10mA/$m^2$).

Effect of Metal Mask Screen on Metal-induced Recombination Current and Solar Cell Characteristics (금속 마스크 스크린이 금속 재결합 전류와 태양전지 특성에 미치는 영향)

  • Lee, Uk Chul;Jeong, Myeong Sang;Lee, Joon Sung;Song, Hee-eun;Kang, Min Gu;Park, Sungeun;Chang, Hyo Sik;Lee, Sang Hee
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The mesh mask screen, which is generally used for screen printing metallization of silicon solar cell, requires high squeegee pressure and low printing speed. These requirements are acting as a limiting factor in production yield in photovoltaic industries. In order to improve the productivity, a metal mask, which has high durability and high printing speed, has been researched. In this paper, the characteristics of each solar cell, in which electrodes were formed by using a metal mask and a mesh mask, were analyzed through recombination current density. In particular, the metal-induced recombination current density (Jom) representing the recombination of the emitter-metal interface was calculated using the shading method, and the resulting efficiency and open-circuit voltage were analyzed through the diode equation. As a result of analyzing the proportion of the metal-induced recombination current density to the total emitter recombination current density, it was analyzed that the reduction of the metal-induced recombination current density through the metal mask is an important factor in reducing the total recombination current density of the solar cell.

Analysis on Induced Current Density Inside Human Body by 60 Hz ELF Magnetic Fields (60Hz ELF 자계에 의한 인체내부 유도 전류밀도 해석)

  • Min Suk-Won;Song Ki-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.76-81
    • /
    • 2006
  • This paper analysed the characteristics of current density induced inside human body by 60 Hz extremely low frequency magnetic fields according to varying conductivities of human model. Human model was composed of several organs and other parts, whose shapes were expressed by spheroids or cylinders. Organs such as the brain, heart, lungs, liver and intestines were taken into account. Applying the boundary element method to the human model, we estimated effects on the induced current distribution due to differences of the organ conductivity and shape. We find organ conductivity influences most and a cross section area and a position of organ also gives effects.

Analysis on Induced Current Density inside Human Body by 60 Hz ELF Magnetic Fields (60Hz ELF자계에 의한 인체내부 유도 전류밀도 해석)

  • Min Suk Won;Song Ki Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.581-583
    • /
    • 2004
  • This paper analysed the induced current density characteristics inside human body by extremely low frequency magnetic fields according to varying conductivities of human model. Human model was composed of several organs and other parts of 곳 human body, whose shapes were spheroids or cylinders. Organs taken into account were the brain, heart, lungs, liver and intestines. Applying the boundary element method to the human model, effects of the organ conductivity difference to the induced current distribution were estimated.

  • PDF

Nutrient Variations in the Jindong Bay during Summer by Ecosystem Modeling (해양생태계모델에 의한 하계 진동만의 영양염변동)

  • 김동선;홍철훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.164-176
    • /
    • 2003
  • During summer, the DIN (dissolved inorganic nitrogen) and DIP (dissolved inorganic phosphate) observed in the Jindong Bay in the southern sea of Korea show much higher values in the inner area of the bay. In general, they have high values in the upper (0-1 m) and lower layers (8 m-bottom), but are relatively lower in the middle layer (1-8 m). These features in their distribution are examined using an ecosystem model with considering the wind, tidal current, horizontal gradient of water density and residual flow. The experiments were focused on how to influence nutrients associated with these conditions. In the experiment with tide-induced residual flow, the values of nutrients appeared lower than the observation, and were well corresponded to it when the effects of wind, tide-induced residual current and horizontal gradient of water density were additionally imposed. A statistical analysis identifies these results. This paper suggests that variation of nutrient in the Jindong Bay during summer should be seriously a(footed wind-driven current by the wind and density-driven current is induced by the horizontal gradient of water density as well as tidal current.

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

Analysis on Induced Current Density Inside Human Body of Hot-Line Worker for 765kV Double Circuit Transmission Line (765 kV 2회선 송전선의 활선 작업자 인체내부 유도전류 밀도 해석)

  • Min, Suk-Won;Song, Ki-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.46-50
    • /
    • 2004
  • This paper analysed the induced current density inside human body of hot-line worker for 765kV double circuit transmission line according to locations of human body Human was modelled by several organs, which included brain, heart, lungs, liver and intestines. We applied the 3 dimensional boundary element method to calculate induced electric fields.

  • PDF

Corrosion Rate of Buried Pipeline by Induced Alternating Current (교류가 유도되는 매설배관에서의 교류 부식속도 측정에 관한 연구)

  • Song H. S.;Kim Y. G.;Lee S. M.;Kho Y. T.;Park Y. S.
    • 한국가스학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.45-57
    • /
    • 2001
  • An alternating current (AC) corrosion using coupon has been studied. Coupons were applied in terms of AC voltage from high value to low value through the survey of AC voltages on buried gas transmission pipeline over the country. Parameters such as AC current density of coupon, AC voltage, cathodic protection potential, soil resistivity and frequency were monitored continually. Corrosion induced by AC was observed even under cathodically protected condition that met cathodic protection criterion(: below -850mv vs. CSE). Corrosion rate was affected mainly not by AC voltage but by both of frequency and AC current density. An experimental corrosion rate relationship could be obtained statistically, in which AC corrosion rate increased linearly with effective AC current density and its slope was 0.619.

  • PDF

Analyses on Current Densities Induced Inside a Worker Using AC Arc Welder (교류 아크용접기를 사용하는 작업자의 인체 유도전류밀도 해석)

  • Park, Jun-Hyeong;Min, Suk-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.433-438
    • /
    • 2008
  • This paper analyses current densities induced inside a worker using AC arc welder. Applying the boundary element method, we calculate current densities induced in organs inside a worker in case he was located at 1cm, 3cm, 5cm, 10cm, 15cm, 20cm far from a power cable of AC arc welder. As results of study, we find a maximum current density induces at a heart surface and may be higher than $10mA/m^2$ of ICNIRP guideline if he works within 15cm from a power cable.