• Title/Summary/Keyword: Indophenol method

Search Result 18, Processing Time 0.028 seconds

The Content of Ascorbic acid in Fruit Milks and Fruit Yogurts (과실(果實)이 첨가(添加)된 우유(牛乳) 및 Yogurt중(中)의 Vitamin C 함량(含量) 측정(測定))

  • Park, Kui-Sun
    • Journal of Nutrition and Health
    • /
    • v.13 no.4
    • /
    • pp.195-198
    • /
    • 1980
  • The contents of ascorbic acid in milk and fermented milk, yogurt added with fruits were determined by 2.6-dichlorophenol indophenol method using a Spectrophotometer. Threes sample of fruit milks and three of fruit yogurts were collected from the several markets in Busan City. The amounts of the vitamin as the reduced form were 0.16 mg/100m1 of strawberry milk, 0.31mg/100m1 of orange milk, and 0.08mg/100m1 of banana milk. The vitamin was not detected from the fermented fruit yogurt samples.

  • PDF

Rapid Method for Seperation and Quantitation of p-Nitrophenol Derivative by HPLC (p-Nitrophenol 유도체의 HPLC에 의한 신속 분리 정량)

  • 이완구
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.1
    • /
    • pp.89-93
    • /
    • 1983
  • Various analytical methods for p-Nitrophenol derivatives have been reported as follows. 1) Thin-Layer Chromatography, 2) Gas Chromatography, 3) Cholinesterase Activity Determination, 4) Diazo Method, 5) Nitrophenol Method, 6) Indophenol Method. But these methods are mainly analyse total quantity of p-Nitrophenol and are not available for the seperation and pose some analytical problems associated with extensive clean up procedure. A rapid and simple method was developed for the seperation and quantitation for the p-Nitrophenol and it's derivatives by HPLC. Also an experiment was undertaken by the authors for the quantitation of the p-Nitrophenol in the blood of the intoxicated body. Levels of p-Nitrophenol ranging from approximately 0.10 to $1.69 \mu g/ml$ for Parathion and $3.44 \mu g/ml$ for EPN in each sample were measured with the average recovery of $95.5\pm0.52%$

  • PDF

Reuse of Rice-Hull and Application Technology Development in Waste Water Treatment (왕겨의 재활용 및 하수처리 활용기술 개발)

  • Shin, Ho-Sang;Ahn, Hye-Sil;Jung, Dong-Gyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.170-173
    • /
    • 2003
  • Activated Rice-Hull carbon was developed to remove ammonia compounds in water matrix. Isotherm adsorption tests of ammonia were conducted using a bottle-point technique and column test. Residual ammonia after Jar-Test or passing through the column was determined by Indophenol method, and assessed the removal efficiency for ammonia of the adsorbent. As a result, the adsorption capacity for ammonia of activated racehull carbon was very larger than that of coconut shell carbon, because the rice hull carbon had the higher BET surface area of silicate. The activated racehull carbon is under the development as adsorbent to remove ammonia in drinking water and waste water.

  • PDF

Feasibility Study of On-site Analysis on Ammonium ion (암모늄이온의 현장 분석 방법 개발에 관한 기초 연구)

  • Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.275-280
    • /
    • 2014
  • Because ammonia in water body can cause water pollution as a result of generating ammonium ion, it is of importance in the management of water quality. This work performed to analyze the ammonium ion by measuring the color band length on the basis of modifying the indophenol method. When 1-naphthol was employed as a coloring agent, the maximum absorbance was shown near 720nm, where the proper injection was in the range of 0.5-1.5ml. About 80% of absorbance was observed after the color development was made within the 20 minutes. In the manufacturing of coloring agent, the proper concentration of NaOH was 1.5-2.5M, and the effect of pH on the color development is negligible. In addition, the color development was effectively in the region of room temperature.

Analysis Methods for Measurement of Ammonia Concentration (가스상 암모니아 측정을 위한 분석방법별 특성 연구)

  • Sa, Jae-Hwan;Yoon, Seok-Kyung;Roh, Gi-Hwan;Jeon, Eui-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.43-54
    • /
    • 2008
  • Management and control of ammonia at the sources and ambient largely depend on sampling and measurement techniques. Good sampling and measurement techniques provide high quality data. The main purpose of the study is compare the analytical characteristics of the Indolphenol method which is one of the standard method in Korea with automatic analyzers for continued measuring gaseous ammonia. For comparison with other analytical methods, the verification test was designed to evaluate performance parameters; linearity, absorption efficiency, reproducibility and repeatability test, accuracy, and response time test. $R^2$ of calibration curve using IPM and CLM was very high (value is 1.000), but for EcSM $R^2$ value was estimated to be lower than IPM and CLM (as 0.991). The RSD of the CLM ranged from 0.1 to 2.3% over the nine concentration levels measured, %Ds was 0.1 to 10.7%, and average RA over all the measurements was 3.3%. The RSD of IPM and EcSM was ranged from 1.0 to 8.1, 3.9 to 14.0 respectively, and average RA were 8.71, 4.9% respectively. Rise in response times of EcSM was estimated to be 1 minute. It is found to be more sensitive than response time (which ranged from 2 to 9 minute) of CLM. For ammonia concentration measured using the IPM and the CLM from the same ammonia source, linear regression of IPM versus CLM show a slope of 0.805, an intercept of 637 ppb, and $R^2$ of 0.868.

Evaluation of NH3 emissions in accordance with the pH of biochar

  • Yun-Gu, Kang;Jae-Han, Lee;Jin-Hyuk, Chun;Yeo-Uk, Yun;Taek-Keun, Oh;Jwa-Kyung, Sung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.787-796
    • /
    • 2021
  • Nitrogen (N) is the most important element during the process of plant growth, and the quality of crops varies depending on the amount of nitrogen present. Most of the nitrogen is used for plant growth, but approximately 10 - 20% of Nitrogen is carried away by the wind in the form of NH3. This volatilized NH3 reacts with various oxides in the atmosphere to generate secondary particulate matter. To address this, the present study attempts to reduce NH3 occurring in the soil using biochar at a specific pH. Biochar was used as a treatment with 1% (w·w-1) of the soil, and urea was applied at different levels of 160, 320, and 640 kg·N·ha-1. NH3 generated in the soil was collected using a dynamic column and analyzed using the indophenol blue method. NH3 showed the maximum emission within 4 - 7 days after the fertilizer treatment, decreasing sharply afterward. NH3 emission levels were reduced with the biochar treatment in all cases. Among them, the best reduction efficiency was found to be approximately 25% for the 320 kg·ha-1 + pH 6.7 biochar treatment. Consequently, in order to reduce the amount of NH3 generated in the soil, it is most effective to use pH 6.7 biochar and a standard amount (320 kg·N·ha-1) of urea.

Study on the Filter Collection Methods of Ammonia and Ammonium Salts in the Atomosphere (대기중의 암모니아 및 암모늄염의 필터포집법에 관한 연구)

  • Hui Kang Kim;橋本芳一;Yong Keun Lee
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.36-42
    • /
    • 1982
  • Filters were evaluated to use in the collection of ammonia and ammonium salts in the atmosphere. Ammonia from standard gas generator was collected on a glass fiber filter impregnated with a mixture of 3% boric acid and 25% glycerin. The collection efficiency by the impregnated filter was 96.4${\pm}$2.15% in pH control method and 97.4${\pm}$1.06% in the atmosphere for five measurements, respectively. Adsorption and desorption of gaseous ammonia were compared using three commercially available filters; glass fiber, quartz fiber and polycarbonate filters. Both glass and quartz fiber filters indicated some loss of ammonium salts and adsorption of ammonia, respectively. However, polycarbonate filter was found to be satisfactory for the collection of ammonium salts in the atmosphere. The minimum measurable concentration of ammonia was 0.83ppb (ca. 0.63${\mu}g$/$m^3$) by spectrophotometry of the indophenol method for the sample collected by 47mm${\phi}$ filter(20l/min, 60min). The sensitivity of the present method is about 20 folds higher than that of conventional method of bubbler collection followed by spectrophotometry, so that this method makes it possible to measure thevariation of ammoniacal concentrations in the atmosphere for a short time period of about 60 min.

  • PDF

Reducing the Effect of Ammonia Emissions from Paddy and Upland Soil with Deep Placement of Nitrogen Fertilizers (질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.230-235
    • /
    • 2022
  • BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol-blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.