• Title/Summary/Keyword: Indoor wireless optical communication system

Search Result 20, Processing Time 0.02 seconds

Channel Characteristics of Indoor Wireless Infrared Communication System Due to Different Transceiver Conditions

  • Peng, Chuan;Wang, Zan;Kim, Ji-Do;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.198-203
    • /
    • 2008
  • In this paper, we consider the diffuse type of indoor wireless optical communication (WOC) system. To find the channel characteristics of indoor wireless infrared communication system, we investigate the simulation process to get the impulse response of diffuse type and analyze the scenario of the indoor structure which we have built. The simulation results of the impulse response include power ratio and time delay due to bounce times. We get and discuss the receiving power distribution according to six configurations which have different transmitter and receiver positions and reflection coefficients of the indoor structure assumed. The results of this paper are useful to design the indoor wireless optical communication systems.

Transmission Characteristics of Indoor Infrared Diffuse Links Employing Three-Beam Optical Transmitters and Non-Imaging Receivers

  • Wang, Zan;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1251-1260
    • /
    • 2008
  • Diffuse wireless optical communication offers more robust optical links in terms of coverage and shadowing than line-of-sight links. However, traditional diffuse wireless infrared (IR) transceiver systems are more susceptible to multi-path distortion and great power decrease, which results in limiting high-speed performance. Multi-beam is an effective technique to compensate for multi-path distortion in a wireless infrared environment. The goal of this paper is to analyze the transmission characteristics by replacing traditional diffuse system (TDS) which contains single wide angle transmitter and single element receiver by system consisting of three-beam transmitter and non-imaging receiver (TNS) attached with compound parabolic concentrator (CPC). In the simulation, we use the recursive model developed by Barry and Kahn and build the scenario based on 10 different cases which have been listed in Table 1. Moreover, we also check the reliability of the TNS diffuse link channel by BER test on the basis of different receiver positions and room sizes. The simulation results not only show the basic transmission characteristics of TNS diffuse link, but also are references to design more efficient and reliable indoor infrared transmission systems.

Visible Light Communication Employing Optical Beamforming: A Review

  • Kim, Sung-Man
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.308-314
    • /
    • 2018
  • Visible light communication (VLC) is considered a strong future candidate for indoor wireless communication. However, its performance seems to be relatively unsatisfactory when compared to wireless local area network (WLAN) communication using millimeter waves. To improve the performance of VLC, numerous technologies have been proposed so far, in both electrical and optical domains. Among the proposals, optical beamforming (OB) is an optical-domain technology that can concentrate light in a specific direction or on a target spot. It can significantly improve VLC performance and can be widely used, because it does not depend on electrical modulation schemes. Therefore, this review discusses the concept, principle, and types of OB, the structure of a VLC system using OB, performance results of OB, and the combination of OB with electrical signal modulation in VLC. OB is expected to be one of the key techniques in future VLC implementations, similar to radio-frequency beamforming in millimeter-wave communication.

Indoor Positioning System using LED Lights and a Dual Image Sensor

  • Moon, Myoung-geun;Choi, Su-il;Park, Jaehyung;Kim, Jin Young
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.586-591
    • /
    • 2015
  • In recent years, along with the rapid development of LED technology, indoor positioning systems based on visible light communication (VLC) have been researched. In this paper, we propose an accurate indoor positioning method using white-light LEDs and a dual image sensor. Indoor LED lights are located at the ceiling in a room and broadcast information on their positions using VLC technology. A mobile device with a dual image sensor receives LED position information by VLC and estimates its position and azimuth angle. Simulation and experimental results are given to show the performance of the proposed indoor positioning system.

A Study on the Duplex Wireless Communications Using LED Lighting (가시광 LED를 이용한 양방향 무선통신 시스템 연구)

  • Key, Gwang-Hyun;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.852-857
    • /
    • 2010
  • In this paper, we proposed and demonstrated an indoor visible-light communication system using an array of light-emitting diodes (LEDs). The main idea is based on that the LEDs can be used not only for lighting but also for free-space optical communications. Because LEDs offer advantageous properties such as high brightness, reliability, lower power consumption and long lifetime, the indoor visible-light communication systems are going to provide high quality of service by the high radiation power of the LED lighting. Prototype of simplex channel for audio and the full-duplex channel for text message were developed. Results indicates the viability of creating inexpensive free-space optical communication transceivers that might be embedded in commercial light products to supports indoor wireless networking.

Optical Wireless Remote Control Using Indoor LED Lightings (LED 실내조명을 이용한 광무선 원격제어)

  • Sohn, Kyung-Rak;Sohn, Chang-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1111-1116
    • /
    • 2012
  • At present, indoor optical wireless communications using LED lightings has been widely studied. The combination of this technology to the low voltage powerline grid installed in each home makes an efficient method for fulfilling the premise of broadband access for home networking. In this paper, white LEDs were used for both illumination and remote-control, so that information can be broadcast within a room for control the optical wireless systems. We implemented a model car to evaluate the performance of optical wireless remote-control. The requirement for levels of illumination suitable for communication were investigated and applied to design the test-bed. In spite of limitation of line-of-sight communications, it will open up new applications to the optical wireless remote control system in an electromagnetic interference region.

A Photon Modeling Method for Characterization of Indoor Optical Wireless System (실내 광 무선 통신 특성 해석을 위한 포톤 모델링 방법)

  • Lee, Jung-Han;Lee, Haeng-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.688-697
    • /
    • 2008
  • In this paper, an analysis method for indoor optical wireless channel properties based on photon model is presented for characterization of communication environment. In contrast to radio waves, optical waves have very short wave-lengths and very high frequencies, so that material properties become important. Channel models including diffuse reflections and absorption effects due to material surface textures make conventional electromagnetic wave analysis methods based on ray tracing consume enormous time. To overcome these problems, an analysis method using photon model is presented that approximates light intensity by a density of photons. The photon model ensures that simulation time is within a predictable limit.

Searching and Autoalignment Method for Indoor Free-space Optical Communication (실내용 자유 공간 광 통신을 위한 수신단의 위치 탐색 및 자동 링크 정렬 방법)

  • Lee, Kwanyong;Cho, Seung-Rae;Lee, Chang-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.230-236
    • /
    • 2019
  • We propose and demonstrate a searching and autoalignment method for indoor optical wireless communication, using a cost-effective retroreflective sheet and a microelectromechanical system (MEMS) mirror. We use an extremum-seeking method for a single axis and beam steering with a MEMS mirror to maintain a line of sight (LOS) with the optical link. This autoalignment method shows a receiver sensitivity of -31.87 dBm for a bit rate of 2.5 Gb/s over a 7 m communication link.

Performance Analysis of Optical Path Difference on Visible Light Communication System for Intelligent Transport Systems

  • Choi, Jae-Hyuck;Lee, Kye-San;Cha, Jae-Sang;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.114-120
    • /
    • 2009
  • In outdoor visible light communication channels and LED road illumination communications for the intelligent transport systems (ITS), inter symbol interference (ISI) due to multipath propagation prevents high data rate transmission. Indoor wireless optical communication systems utilizing white LED lights and on the road illumination have been studying about it. Generally, plural lights are installed in room and considered to the traffic information system using existing LED traffic lights. Therefore, their optical path difference must be considered. In this paper, the influence of an optical path difference has been investigated and two approaches against this problem are introduced. One uses on-off keying, return-to-zero (OOK-RZ) coding and the other uses optical orthogonal frequency division multiplexing(OFDM).

  • PDF

Conflict Graph-based Downlink Resource Allocation and Scheduling for Indoor Visible Light Communications

  • Liu, Huanlin;Dai, Hongyue;Chen, Yong;Xia, Peijie
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • Visible Light Communication (VLC) using Light Emitting Diodes (LEDs) within the existing lighting infrastructure can reduce the implementation cost and may gain higher throughput than radio frequency (RF) or Infrared (IR) based wireless systems. Current indoor VLC systems may suffer from poor downlink resource allocation problems and small system throughput. To address these two issues, we propose an algorithm called a conflict graph scheduling (CGS) algorithm, including a conflict graph and a scheme that is based on the conflict graph. The conflict graph can ensure that users are able to transmit data without interference. The scheme considers the user fairness and system throughput, so that they both can get optimum values. Simulation results show that the proposed algorithm can guarantee significant improvement of system throughput under the premise of fairness.