• Title/Summary/Keyword: Indoor wireless channel

Search Result 118, Processing Time 0.031 seconds

A MAC Protocol for LED visible light communications with beamforming (빔포밍 기능을 가진 LED 무선 가시광 LAN 통신을 위한 MAC 프로토콜)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.425-432
    • /
    • 2011
  • To increase the bit rate over than 1 Gb/s in LED visible light communications, we need to reduce the multipath effect of the light in indoor environment. In this paper, we propose a MAC protocol for LED visible light wireless LAN with beamforming technique. We assumed that spatial light modulator is used for beamforming function. We use polling method since detecting another uplink channel is difficult in visible light communication. We also estimated the performance of the proposed MAC protocol.

A Study on The Performance Improvement of HDR-WPAN System Using Turbo Code (Turbo Code를 사용한 HDR-WPAN 시스템의 성능개선 방안 연구)

  • Kang, Chul-Gyu;Kim, Jae-Young;OH, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, we propose performance improvement algorithm for high data rate wireless personal area network (HDR-WPAN) system using turbo code. Turbo code increase detection delay and computation according to iterate counts. However, turbo code has been shown to be very close th the Shanon limit, can be classified as a block-based error correction code. Turbo code has gain about E$_b$/N$_o$=5.8dB at 10$^{-4}$ in the multipath indoor channel. In the result, HDR-WPAN system adopted turbo code has reliable communication by low power.

  • PDF

Study on Wave Propagation Characteristics Modeling in Tunnel (터널 환경에서의 전파전파 특성 모델링 연구)

  • Jeong, Won-Jeong;Kim, Tae-Hong;Han, Il-Tak;Choi, Moon-Young;Ryu, Joon-Gyu;Lee, Ho-Jin;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.1003-1013
    • /
    • 2009
  • In the domestic environments, there are many tunnels since most of terrains have mountains. To ensure the quality of wireless network service in NLOS environment like tunnels which differ from indoor or outdoor wireless channels, researches on wave-propagation characteristics. through such channel are necessary. Especially, in such environment the ground repeater called Gap-Fillers are usually used for satellite mobile services. To make sure that mobile service using satellites in tunnels is available, the research about Gap Filling method is essential. This research is focus on the characterising the wave-propagation through tunnels, to find the appropriate frequency, HPBW of the Gap-Filler antennas, the number of Gap-Fillers, etc. In this paper, we present the effective Gap Filling method in tunnels for ISM band, based on analysis of ray tracing and measurement results.

A Voice Coding Technique for Application to the IEEE 802.15.4 Standard (IEEE 802.15.4 표준에 적용을 위한 음성부호화 기술)

  • Chen, Zhenxing;Kang, Seog-Geun
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.612-621
    • /
    • 2008
  • Due to the various constraints such as feasible size of data payload and low transmission power, no technical specifications on the voice communication are included in the Zigbee standard. In this paper, a voice coding technique for application to the IEEE 802.15.4 standard, which is the basis of Zigbee communication, is presented. Here, both high compression and good waveform recovery are essential. To meet those requirements, a multi-stage discrete wavelet transform (DWT) block and a binary coding block consisting of two different pulse-code modulations are exploited. Theoretical analysis and simulation results in an indoor wireless channel show that the voice coder with 2-stage DWT is most appropriate from the viewpoint of compression and waveform recovery. When the line-of-sight component is dominant, the voice coding scheme has good recovery capability even in the moderate signal-to-noise power ratios. Hence, it is considered that the presented scheme will be a technical reference for the future recommendation of voice communication exploiting Zigbee.

Performance Analysis of the Wireless Localization Algorithms Using the IR-UWB Nodes with Non-Calibration Errors

  • Cho, Seong Yun;Kang, Dongyeop;Kim, Jinhong;Lee, Young Jae;Moon, Ki Young
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.105-116
    • /
    • 2017
  • Several wireless localization algorithms are evaluated for the IR-UWB-based indoor location with the assumption that the ranging measurements contain the channelwise Non-Calibration Error (NCE). The localization algorithms can be divided into the Model-free Localization (MfL) methods and Model-based Kalman Filtering (MbKF). The algorithms covered in this paper include Iterative Least Squares (ILS), Direct Solution (DS), Difference of Squared Ranging Measurements (DSRM), and ILS-Common (ILS-C) methods for the MfL methods, and Extended Kalman Filter (EKF), EKF-Each Channel (EKF-EC), EKF-C, Cubature Kalman Filter (CKF), and CKF-C for the MbKF. Experimental results show that the DSRM method has better accuracy than the other MfL methods. Also, it demands smallest computation time. On the other hand, the EKF-C and CKF-C require some more computation time than the DSRM method. The accuracy of the EKF-C and CKF-C is, however, best among the 9 methods. When comparing the EKF-C and CKF-C, the CKF-C can be easily used. Finally, it is concluded that the CKF-C can be widely used because of its ease of use as well as it accuracy.

Performance Analysis of eHDR-WPAN System Using Interleaver (인터리버를 이용한 eHDR-WPAN 시스템의 성능 분석)

  • Jeong, Seung-Hee;Lee, Hyun-Jae;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.788-791
    • /
    • 2005
  • In this paper, We propose performance of improvement method for eHDR-WPAN system using Interleaver. Burst error pattern caused by fading in indoor wireless channel. for the reason, using of Interleave method (make burst error to random error) can be enhance to error-rate in system. This paper is used Convolutional, Block, Random Interleaver. We make use of 9 and 27 for symbol spacing. Block-Interleaver is show that performance about 0.6dB of E$_b$/N$_o$ at $10^{-4}$. In result, the suitable Interleaver for eHDR-WPAN system is Block Interleaver of 9 symbol spacing.

  • PDF

Transmission Techniques for Downlink Multi-Antenna MC-CDMA Systems in a Beyond-3G Context

  • Portier Fabrice;Raos Ivana;Silva Adao;Baudais Jean-Yves;Helard Jean-Francois;Gameiro Atilio;Zazo Santiago
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.157-170
    • /
    • 2005
  • The combination of multiple antennas and multi-carrier code division multiple-access (MC-CDMA) is a strong candidate for the downlink of the next generation mobile communications. The study of such systems in scenarios that model real-life trans-missions is an additional step towards an optimized achievement. We consider a realistic MIMO channel with two or four transmit antennas and up to two receive antennas, and channel state information (CSI) mismatches. Depending on the mobile terminal (MT) class, its number of antennas or complexity allowed, different data-rates are proposed with turbo-coding and asymptotic spectral efficiencies from 1 to 4.5 bit/s/Hz, using three algorithms developed within the European IST-MATRICE project. These algorithms can be classified according to the degree of CSI at base-station (BS): i) Transmit space-frequency prefiltering based on constrained zero-forcing algorithm with complete CSI at BS; ii) transmit beamforming based on spatial correlation matrix estimation from partial CSI at BS; iii) orthogonal space-time block coding based on Alamouti scheme without CSI at BS. All presented schemes require a reasonable complexity at MT, and are compatible with a single-antenna receiver. A choice between these algorithms is proposed in order to significantly improve the performance of MC-CDMA and to cover the different environments considered for the next generation cellular systems. For beyond-3G, we propose prefiltering for indoor and pedestrian microcell environments, beamforming for suburban macrocells including high-speed train, and space-time coding for urban conditions with moderate to high speeds.

Improved Equalization Technique of OFDM Systems Using Block Type Pilot Arrangement (Block Type 파일럿 배치를 적용한 OFDM 시스템의 등화 기법 개선)

  • Kim Whan-Woo;Kim Ji-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.113-120
    • /
    • 2006
  • This paper is concerned with a equalization technique for Orthogonal Frequency Division Multiplexing (OFDM) systems based on a block type pilot arrangement over slow fading channels. The bit rates obtained in underwater channels are relatively modest compared to some other communication channels such as cellular phones or indoor wireless systems. Consequently. the Doppler effect is the important parameter in tracking a channel. In case of a coherent demodulation scheme, the residual mean phase errors due to Doppler frequency may be fatal for the performance of the system. The equalizer could not solely handle mean Doppler shift. To account for the common Doppler effect a phase error tracking loop is used with the frequency equalizer. so that the rotation errors are avoided. Furthermore. simulations show that we can reduce the computational load of the tracking loop with negligible effect on performance.

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.

The Effects of PRF and Slot Interval on the PPM-Based Ultra Wide-Band Systems (PPM-기반의 UWB 시스템에 대한 PRF와 슬롯 시간의 영향)

  • 김성준;임성빈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12C
    • /
    • pp.1192-1199
    • /
    • 2003
  • In this paper, we investigate the effect of pulse repetition frequency (PRF) and slot interval on the throughput performance of the ultra wide band (UWB) wireless communication system in multi-path channels, and based on these observations, a data throughput control using PRF and slot interval is proposed for maximizing the effective throughput. Recently, due to many desirable features of the UWB system, it has drawn much attention especially for short-range high-speed data transmission. The UWB system has two parameters to determine its data throughput; pulse repetition frequency and slot interval. In the multi-path channel with additive white Gaussian noise, the UWB system suffers from the inter-pulse interference (IPI) and noise, which result in degradation of system performance. The UWB system can vary the two parameters to maintain and/or improve the system performance. In this paper, we demonstrate the effects of the two parameters on the data throughput of the UWB system in various multi-path indoor channels through computer simulation, and show that the variable data rate approach designed based on the observations is superior to the fixed data rate one in terms of effective throughput performance.