• Title/Summary/Keyword: Indoor quality

Search Result 1,349, Processing Time 0.03 seconds

Evaluation of Ventilation System Performance Using Indoor Air Quality Model (실내공기질 모델을 이용한 환기 시스템의 공기 정화 효율성 평가)

  • 최성우
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.57-66
    • /
    • 1997
  • Successful energy conservation and good indcfor air quality (IAQ) are highly dependent on ventilation system. Air filtration is a primary solution of indoor air control strategies in terms of reducing energy consumption and improving ihdoor air quality. A conventional system with bypass filter, as it is called variable-air-volume/bypass filtration system (VAV/BPFS), is a variation of the conventional variable air volume (VAV) systems, which is designed to eliminate indoor air pollutant and to save energy. Bypass filtration system equipped with a high-efficiency particulate filter and carbon absorbent provides additional cleaned air into indoor environments and maintain good IAQ for human health. The objectives of this research were to compare the relative total decay rate of indoor air pollutant concentrations, and to develop a mathematical model simulating the performance of VAV/BPFS. All experiments were performed in chamber under the controlled conditions. The specific conclusions of this research are: 1. The VAV/BPFS system is more efficient than the VAV system in removing indoor air pollutant concentration. The total decay rates of aerosol, and total volatile organic compound (TVOC) for the VAV/BPFS system were higher than those of the conventional VAV system. 2. IAQ model predictions of each pollutant agree closely with the measured values. 3. According to IAQ model evaluation, reduction of outdoor supply air results in decreased dilution removal rate and on increased bypass filtration removal rate with the VAV/BPFS. As a results, we recommends the VAV/BPFS as an alternative to conventional VAV systems.

  • PDF

Temporal Variation of Winter Indoor PM2.5 Concentrations in Dwellings in Ger Town of Ulaanbaatar, Mongolia (몽골 울란바토르시 게르촌 주택의 겨울철 실내 초미세먼지(PM2.5) 농도의 시간적 변이)

  • Lee, Boram;Jang, Yelim;Lee, Jiyoung;Kim, Yoonjee;Ha, Hunsung;Lee, Wooseok;Choe, Wooseok;Kim, Kyusung;Woo, Cheolwoon;Ochir, Chimedsuren;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.98-105
    • /
    • 2018
  • Objectives: In Mongolian housing, they use coal as a fuel for indoor heating and cooking. The combustion of coal releases particulate matter, which can affect indoor air quality. The purpose of this study was to analyze the concentrations of indoor $PM_{2.5}$ in winter time dwellings in ger town. Methods: In this study, indoor $PM_{2.5}$ concentrations, temperature and humidity in houses were measured by a real-time PM monitor, while the time activity patterns of the residents were also observed. Results: The correlation between factors that may affect the indoor air quality was analyzed.The indoor $PM_{2.5}$ concentrations were $178.4{\pm}152.7{\mu}g/m^3$ (n=37). Five types of indoor $PM_{2.5}$ concentrations have been classified, which were associated with indoor activity. The stove type, fuel types and indoor activities such as cleaning, cooking and opening the stoves were not significantly associated with indoor $PM_{2.5}$ levels. Conclusions: Further study is needed to determine the effect of stove type through 24hours of indoor air quality monitoring.

Dwelling Quality Evaluation of Rural Houses Constructed with Industrialized Wall Structures (공업화 구조 농촌주택의 거주성 평가)

  • 최윤정;윤정숙
    • Journal of the Korean housing association
    • /
    • v.13 no.5
    • /
    • pp.9-20
    • /
    • 2002
  • The purpose of this study are to evaluate the dwelling quality of rural houses constructed with industrialized wall structures(ALC; Autoclaved Light weight Concrete, SRC; Steel Fiber Reinforced Concrete, ST'L; Steel Framed Insulating Panel), and to establish a method of dwelling quality evaluation. The questionnaire survey by mail was done, for investigating the residents' responses to indoor environment, durability, and economic aspect. The respondents are 118 residents living in rural houses constructed with industrialized wall structures. Physical elements of indoor environment(temperature, humidity, air quality, and noise level) were measured in three sample houses, which were selected considering of architectural characteristics. The findings are as follows; 1) As a result of questionnaire survey, residents' responses to dwelling quality are generally positive. 2) As a result of measurement, indoor environments of sample houses are in relatively comfortable condition. 3) As a summary of research, ALC and ST'L are evaluated as recommendable structures for a rural house.

Tendency of the indoor pollutants along with increased dwelling period at new apartments (거주기간 증가에 따른 신축 공동주택의 실내오염도 변화추이)

  • Jang, Seong Ki;Ryu, Jung Min;Seo, Soo Yun;Lim, Jung Yeon;Lee, Woo Seok
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.453-459
    • /
    • 2007
  • This study is for investigation of indoor conditions with air contamination after occupation 120 households in brand-new apartments by measuring the concentration of VOCs and carbonyl compounds. It has been found that TVOC (total volatile organic compounds; TVOCs) were $688.61{\mu}g/m^3$ after moving in. And formaldehyde, toluene, m, p-xylene, acetone and ethylbenzene were $158.56{\mu}g/m^3$, $146.58{\mu}g/m^3$, $69.28{\mu}g/m^3$, $63.80{\mu}g/m^3$ and $29.65{\mu}g/m^3$, respectively. The mean concentrations of indoor air pollutants tend to decrease along an increase dwelling period. But, the mean concentration of d-limonene increased from 2 months to 10 months. Also, toluene, ethylbenzene, m, p, o-xylene amounted to 38.8 % among VOCs studied, this ratio tend to decrease along with and increased dwelling period.

Characteristics of VOCs and Formaldehyde Emitted from Floorings (바닥재로부터 방출되는 휘발성유기화합물과 폼알데하이드 특성)

  • Park, Hyun-Ju;Jang, Seong-Ki;Seo, Soo-Yun;Lim, Jun-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • Since the seventies and the oil crisis, energy-saving measures have led to a reduction in the ventilation of room. The use of synthetic materials which emit various chemical substances had led to an increase in the concentration of indoor pollutants. "Sick building syndrome (SBS)" and "Sick house syndrome (SHS)" are worldwide problems. Also, the number of complaints about indoor air pollution caused by VOCs (Volatile organic compound) and HCHO (Formaldehyde) has increased. It is important that evaluating and understanding emission of indoor air pollutant from building materials. The object of this study was to evaluate emission test method for flooring such as wood based flooring, carpet tile, rubber tile, PVC sheet and tile, and to determine emission of TVOC and form-aldehyde. The quantity of TVOC and carbonyl compounds emission were sampled and measured by Tenax TA and gas chromatography/mass spectrometry (GC/MSD), 2,4-DNPH cartrige with ozone scrubber and high performance liquid from flooring. The TVOC concentration emitted from carpet tile was ($7.419\;mg/m^2 h$) the highest among 5 groups of test materials. In wood based flooring and PVC tile, the emitted concentration of toluene was high. And the dodecane emission was highest in carpet. The concentration of TVOC decreased by an increase in emission test period. After 7 days, the concentration of TVOC from floorings were about 50% below of the concentration at the first day. TVOC emission from wood based flooring, carpet tile, rubber tile, PVC sheet and tile were decreased in 28 days and remained steady after about 15 days. The concentration of formaldehyde emission from floorings showed extremely low.

Properties of Cement Matrix using Carbon Black (카본블랙을 혼입한 시멘트 경화체의 특성)

  • Lee, Jeon-Ho;Lee, Chang-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.217-218
    • /
    • 2021
  • With the prolonged Covid-19 epidemic, movement restrictions such as social distancing are prolonged, and as people stay indoors for a longer time, interest in indoor air pollution is increasing. Indoor air quality is not easily purified unlike outdoors. Among indoor building materials, paints and flooring contain formaldehyde that causes sick house syndrome and VOCs that contain carcinogenicity and harmfulness. For modern people who spend a lot of time living indoors for more than an hour, the occurrence of these harmful substances can be said to be fatal. In response to these risks, in July 2019, the government reinforced the standards for indoor air quality to protect the public's health by raising the detection standards for fine dust, ultrafine dust, and formaldehyde in indoor multi-use facilities. People use machines such as air purifiers to improve indoor air quality, or make efforts such as periodic ventilation. In order to reduce or support these other ancillary efforts more effectively, to reduce the generation of pollutants in the building itself, or to adsorb or purify pollutants in the air, use carbon black as an admixture to make a cement hardened body, and to grasp basic physical properties and adsorption capacity. And the result is as follows. As a result of the experiment to determine the appropriate amount of carbon black, it was confirmed that the more the amount of carbon black was added, the better it was in the formaldehyde emission test, but the tendency was not clear when measuring the flexural strength, so a further experiment to improve this is needed.

  • PDF

Recent Advances in Titania-based Composites for Photocatalytic Degradation of Indoor Volatile Organic Compounds

  • Raza, Nadeem;Kim, Ki-Hyun;Agbe, Henry;Kailasa, Suresh Kumar;Szulejko, Jan E.;Brown, Richard J.C.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.217-234
    • /
    • 2017
  • Indoor air pollutants can cause severe health problems, specifically in terms of toxicological impacts on human. Every day, a complex mixture of many air pollutants is emitted from various sources and subject to atmospheric processes that can create varied classes of pollutants such as carboxylic acids, aldehydes, ketones, peroxyacetyl nitrate, and hydrocarbons. To adhere to indoor air quality standards, a number of techniques such as photocatalytic oxidation of various volatile organic compounds (VOCs) have been employed. Among these techniques, titania ($TiO_2$) based photocatalytic reactions have proven to be the best benchmark standard approach in the field of environmental applications. Over the last 45 years, $TiO_2$-based photocatalytic reactions have been explored for the degradation of various pollutants. This review discusses the indoor air quality profile, types of indoor pollutants, available indoor air cleaning approaches, and performance of $TiO_2$-based catalysts. Finally, we have presented the perspectives on the progress of $TiO_2$ induced photocatalysis for the purification of indoor air.

Evaluation of Indoor Air Improvement of Matrix Using Activated clay as Adsorption Material (활성백토를 흡착재로 활용한 경화체의 실내 공기 개선 평가)

  • Jeong, Hyun-Su;Kim, Yeon-Ho;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.189-190
    • /
    • 2020
  • The importance of indoor air quality management has recently been highlighted due to environmental problems such as indoor air pollution. Among indoor air pollutants, carbon dioxide occurs in cooking, heating, burning, and causes forgetfulness, dementia and amnesia. Radon, which occurs in building materials, soil and ground, is a type 1 carcinogen that causes lung cancer in the body through breathing. These substances can be released from the room through ventilation, but there is a limit to reducing the amount of indoor activity due to reduced ventilation conditions due to increased indoor activity time. However, these substances can be removed from the gas by adsorption. The purpose of this study was to identify the properties of granular active and powdered active white soil and mix them to make cement-based active white soil adsorbent matrix for carbon dioxide, fine dust and radon gas adsorption, and to evaluate indoor air improvements according to the mixing scale. The results of the experiment showed that active carbon dioxide adsorption performance increased for carbon dioxide and radon as the exchange rate increased through physical adsorption. In particular, the higher the replacement rate of the granular active bag, the better adsorption performance was shown.

  • PDF

Study on PM10 levels by the concentration of outdoor aerosols and the number of passengers in railway cabin (외기 미세먼지와 탑승객수에 따른 객실 PM10 농도변화 연구)

  • Park, Eun-Young;Park, Duck-Shin;Kwon, Soon-Bark;Cho, Young-Min;Kim, Se-Young;Jung, Mi-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1816-1820
    • /
    • 2008
  • Indoor air quality in public transportation such as railway, subway and bus is hard to control because of spatial restrict and variation of passenger's number. On January 2007, The Ministry of Environment announced "the guideline of indoor air quality in public transportation" for the concentration managements of particulate matter and carbon dioxide. In this study, we measured the PM10 concentration inside the Mugunghwa-ho passenger cabin and outdoor air and counted passengers. By the statistical analysis using SigmaPlot 2001 and SPSS 13.0, we found that indoor PM10 concentration is significantly affected by outdoor air. It is suggested that the air quality of inflow to the passenger cabin for air exchange must be controlled to support the indoor environment comfortably.

  • PDF

The Indoor Environmental Quality Improving and Energy Saving Potential of Phase-Change Material Integrated Facades for High-Rise Office Buildings in Shanghai

  • Jin, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The conflict between indoor environmental quality and energy consumption has become an unneglectable problem for highrise office buildings, where occupants' productivity is highly affected by their working environment. An effective Façade, therefore, should play the role of an active building skin by adapting to the ever-changing external environment and internal requirements. This paper explores the energy-saving and indoor environment-improving potential of a phase-change material (PCM) integrated Façade. Building performance simulations, combined with parametric study and sensitivity analysis, are adopted in this research. The result quantifies the potential of a PCM-integrated Façade with different configurations and PCM properties, taking as an example a south-oriented typical office room in Shanghai. It is found that a melting temperature of around $22^{\circ}C$ for the PCM layer is optimal. Compared to a conventional Façade, a PCM-integrated Façade effectively reduces total energy use, peak heating/cooling load, and operative temperature fluctuation during the periods of May-July and November-December.