• 제목/요약/키워드: Indoor and outdoor concentrations

검색결과 182건 처리시간 0.03초

시간행동 행태을 이용한 영업용 운전자들의 이산화질소 개인 노출량 예측 (Estimation of Exposure to Nitrogen Dioxide in Professional Drivers Using Time Activity Pattern)

  • 방용남;손부순;양원호;박종안;장봉기
    • 한국환경보건학회지
    • /
    • 제27권1호
    • /
    • pp.20-26
    • /
    • 2001
  • personal nitrogen dioxide(NO$_2$) exposures for 31 professional drivers were measured using passive sampler and time activity diary in Asan and Chunan area, and were estimated using time-weighted average model. Mean concentrations of driver’s indoor and outdoor were 24.7$\pm$10.7 ppb and 23.3$\pm$8.3 ppb, respectively with indoor/outdoor of 1.1. Mean personal NO$_2$ exposure was 30.3$\pm$9.7 ppb. Personal NO$_2$ exposures were strongly correlated with indoor car NO$_2$ levels ($R^2$=0.80) rather than residential indoor NO$_2$ level ($R^2$=0.55). and outdoor NO$_2$ level ($R^2$=0.50). The driver’s NO$_2$ exposure using LP-gas with 24.4$\pm$8.0 ppb were statistically different from those using diesel with 36.3$\pm$14.1 ppb(p<0.01). The effect of driver’s smoking for personal NO$_2$ exposure was not found. It was considered that the main NO$_2$in driver is transportation. Since drivers mostly spent their times in indoor and inside car, time-weighted average model could be used to estimated personal NO$_2$ exposure using time activity diary, Though we did not measure all microenvironments, the estimated personal NO$_2$ exposures with 26.9$\pm$10.2 ppb were statistically correlated with measured personal NO $_2$ exposures30.3$\pm$9.7 ppb ($R^2$=0.89). The mean and standard deviation of personal NO$_2$ exposure using Mote-Carlo simulation were 26.6$\pm$7.2 ppb.

  • PDF

외기 오존 농도에 따른 반도체 작업환경 및 사무실에서의 오존 농도 변화 연구 (A Study of Ozone Variations in a Semiconductor Fabrication Facility and Office Related to the Ozone Concentration in the Outdoor Air)

  • 이지은;정명구;최광민
    • 한국산업보건학회지
    • /
    • 제26권2호
    • /
    • pp.188-197
    • /
    • 2016
  • Objectives: The purpose of this study was to evaluate the ozone exposure levels and the variations in ozone concentration in a semiconductor fabrication facility and office in relation to the ozone concentration in the outdoor air. Methods: This study was performed in an office, semiconductor fabrication facility(such as etching, diffusion, diffusion plenum), and outdoors from June to August, 2015. Measurements were taken six times at the same places using an active sampler(pumped) and real-time equipment. Ozone monitoring by the active sampler method and analysis were carried out by OSHA Method ID-214. Real-time measurement was carried out by ozone measuring equipment using a non-dispersive ultraviolet absorption method. Results: Ozone concentrations in the semiconductor fabrication facility and office were 0.7~7.1 ppb in area samples and 0.72~4.07 ppb in real-time measurement, which were 0.88~8.88% of the occupational exposure limit. The concentration of ozone generated by a laser printer in the office was less than 2 ppb. There was not a significant difference between ozone concentrations before and after using the laser printer. The indoor/outdoor concentration ratio(I/O ratio) in the semiconductor fabrication facility and office was 0.05 and 0.06, respectively. Conclusions: All the samples contained ozone levels lower than the occupational exposure limit and it was confirmed that the concentration of outdoor ozone had no significant effect on indoor ozone concentration.

지하철 전동차 객실 내부 공기질 조사 연구 (Research Study on Indoor Air Quality (IAQ) inside of the Subway Cabin in Seoul Metropolitan City)

  • 이경빈;김진식;배성준;김신도
    • 한국대기환경학회지
    • /
    • 제30권2호
    • /
    • pp.175-187
    • /
    • 2014
  • The subways play an important part in serious traffic problems. Almost seven million citizens a day are using subways as a means of traffic communication in the Seoul metropolitan city in 2012. However, the subway system is a semi-closed environment, so many serious problems occurred in subway stations and injured passengers' health. Platform screen doors (PSD) are expected to prevent negligent accident such as injury or death from falling and improve the air quality of the subway station. Installation of PSD at stations in Seoul metropolitan subway had been completed in December 2009. Consequently, the underground transportation system became a closed environment, so the air quality has improved the platforms, but it has deteriorated in the tunnels. Especially, the subway cabin has many doors, and the doors are frequently opened and closed. For this reason, the effect of door opening on subway cabin, dust flow inside the subway cabin. In this process, the maintenance work may influence the health of people who work underground, as well as that of subway users (passengers). In this study, we measured air quality inside and outside of the subway cabin line 2 in Seoul, Korea. This study focused on the investigation of Indoor Air Quality (IAQ) and measurement target pollutants are PM10, CO, $CO_2$, $NO_2$, $O_3$. It was found that levels of PM10, $CO_2$, and $NO_2$ inside subway cabin line 2 exceeded the Korea IAQ standard. Concentrations of PM10, $CO_2$, and $NO_2$ inside of the cabin are higher than outside of the cabin (Indoor Outdoor ratio is higher than 1.). Concentrations of CO, $O_3$ inside of the cabin are lower than outside of the cabin (Indoor Outdoor ratio is lower than 1.). There is a high correlation between $CO_2$ and passengers inside of the cabin and PM10 is only the weakest correlation with passengers. Therefore, it is important to find out the emission source of $NO_2$. The results of this study will be useful as fundamental data to study indoor air quality of a subway cabin.

제철소 근로자의 벤젠/톨루엔/크실렌 국소환경 측정을 이용한 총 노출 예측 (Estimation of Total Exposure to Benzene, Toluene and Xylene by Microenvironmental Measurements for Iron Mill Workers)

  • 김영희;양원호;손부순
    • 한국환경보건학회지
    • /
    • 제33권5호
    • /
    • pp.359-364
    • /
    • 2007
  • The aim of this study were to assess the personal exposure to volatile organic compounds (VOCs) and to estimate the personal exposure using time-weighted average model. Three target VOCs (benzene, toluene, xylene) were analyzed in personal exposure samples and residential indoor, residential outdoor and workplace indoor microenvironments samples in the iron mill 30 workers during working 5 days. Personal exposure to VOCs significantly correlated with workplace concentration p<0.05), suggesting workplace had strong source and major contribution to personal exposure. Personal exposure could be estimated with time activity pattern and time weighted average (TWA) model of residential indoor and workplace concentrations measured. Time weighted mean microenvironments concentrations were close approximately of personal exposure concentrations. Total exposure for participants can be estimated by TWA with microenvironments measurements and time activity pattern.

아산지역에 있어서의 $NO_{2}$ 개인 피폭량에 미치는 각종 생활행동 패턴의 영향 (Effects of Human Activity Patterns on Personal Exposure Levels of Nitrogen Dioxide in A-San Area)

  • 손부순;김대선;정문식
    • 환경위생공학
    • /
    • 제11권3호
    • /
    • pp.47-52
    • /
    • 1996
  • Personal exposure levels of $NO_{2}$ for office workers and housewives Living in A-San and neighboring prefectures were measured in two seasons with $NO_{2}$ filter badge. $NO_{2}$ concentrations in indoor and outdoor air in their offices and houses were also measured in the same periods. Personal exposure levels in winter ranged from 13 to 132 ppb and its distribution pattern was remarkably different from the other seasons (15.2-17.9 ppb). This fact suggests that use of heating apparatus affects largely $NO_{2}$ indoor air pollution in winter seasons. Actually, $NO_{2}$ exposure levels of subjects used Kerosene heater (43.6ppb) and gas heater (33.4ppb) were higher than those of subjects unused heating apparatus (18.0ppb). Personal exposure levels of $NO_{2}$ for man and woman Living in the same houses were correlated well each other. The time spent indoors for office workers and housewives were both longer than 22 hour a day. Home staying time was about 60% of total indoor staying time for office workers and 90% or more for housewives. Personal exposure levels were significantly related to indoor exposure levels at home all seasons. Furthermore, personal exposure levels could be estimated from $NO_{2}$ concentrations and staying times in various Living environment.

  • PDF

대학건물 실내 에어로졸입자의 입경별 질량농도 특성 (Characteristics of Size-segregated Mass Concentrations of Indoor Aerosol Particles in University Buildings)

  • 서정민;왕빈;장성호;박정호;최금찬
    • 한국산업보건학회지
    • /
    • 제24권4호
    • /
    • pp.453-461
    • /
    • 2014
  • Objective: Based on the fact that fine particles are more likely to produce negative influences on the health of occupants as well as the quality of indoor air compared to coarse particles, it is critical to determine concentrations of aerosol particles with different sizes. Thus, this study focused on the size distribution and concentrations of aerosol particles in university buildings. Method: Aerosol particles in indoor air were collected from four areas: corridors in buildings(In-CO), lecture rooms(In-RO), laboratories(In-LR), and a cafeteria(In-RE). Samples were also collected from outside for comparison between the concentrations of indoor and outdoor particles. For the collection of the samples, an eight stage non-viable cascade impactor was used. Result: The average concentration of $PM_{10}$ in the samples collected from indoor areas was $34.65-91.08{\mu}g/m^3$,and the average for $PM_{2.5}$ was $22.65-60.40{\mu}g/m^3$. The concentrations of the aerosol particles in the corridors, lecture rooms, and laboratories were relatively higher than the concentrations collected from other areas. Furthermore, in terms of mass median aerodynamic diameter(MMAD), the corridors and lecture rooms had higher numbers due to their characteristics, showing $2.36{\mu}m$ and $2.11{\mu}m$, respectively. Laboratories running an electrolysis experiment showed $1.58{\mu}m$, and the cafeteria with regular maintenance and ventilation had $1.96{\mu}m$. Conclusion: The results showed that the $PM_{10}$ concentrations of all samples did not exceed indoor air quality standards. However, the $PM_{2.5}$ concentration was over the standard and, in particular, the concentration of fine particles collected from the laboratories was relatively higher, which could be an issue for the occupants. Therefore, it is important to improve the quality of the indoor air in university buildings.

발생원에 따른 일부 학교 교실의 실내공기질 평가 사례연구 (Assessment of Indoor Air Quality of Classroom in School by Means of Source Generation - Case Study)

  • 양원호;변재철;김영희;김대원;손부순;이정은
    • 한국환경과학회지
    • /
    • 제14권10호
    • /
    • pp.979-983
    • /
    • 2005
  • Indoor air quality has been addressed as an important atmospheric environmental issue and has caught attention of the public in recent years in Korea. Good indoor air quality in classrooms favour student's learning ability, teacher and staff's productivity according to other studies. In this study, each classroom at four different schools was chosen for comparison of indoor and outdoor air quality by means of source generation types such as new constructed classroom, using of cleaning agents and purchased furniture. Temperature, relative humidity (RH), carbon dioxide $(CO_2)$, formaldehyde (HCHO), total volatile organic compounds (TVOCs) and particulate matter with diameter less than $10{\mu}m\;(PM_{10})$ were monitored at indoor and outdoor locations during lesson. HCHO was found to be the worst among parameters measured in new constructed classroom, HCHO and TVOCs was worst in classroom with new purchased furniture, and TVOCs was worst in classroom cleaned by cleaning agents, Indoor $(CO_2)$ concentrations often exceeded 1500 ppm indicating importance of ventilation. Active activity of students during break time made the $PM_{10}$ concentration higher than a lesson, Improvements and further researches should be carried out considering indoor air quality at schools is of special concern since children and students are susceptible to poor air quality.

실내 외 미세먼지 측정 및 관리 기술 동향 (Indoor and Outdoor Particulate Matter: The Current and Future in Monitoring, Assessment, and Management)

  • 김재진;최원식;김진수;노영민;손윤석;양민준
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1635-1641
    • /
    • 2020
  • 대기오염은 최근 급속한 인구증가와 산업화 등으로 인해 인류가 해결해야 할 중요한 문제로 인식되고 있다. 특히 미세먼지 노출에 따른 질병 사례들의 증가와 대기 질 정보에 대한 국민의 관심 증대로 인해 미세먼지는 환경문제를 넘어 사회적 재난 수준의 심각한 이슈로 대두되고 있다. 아울러 대기 중 미세먼지 농도는 실내 미세먼지 농도에 밀접하게 관여하여 실내 공기질의 악화를 야기시킬 수 있다. 따라서 실내외 미세먼지 측정, 모델링, 기여도 평가를 통한 오염 특성을 이해하고, 이를 과학적으로 규명하는 것은 매우 중요하다. 본 특별호는 부경대학교 i-SEED 지구환경교육연구단과 학교미세먼지관리 기술개발사업단에서 진행하고 있는 다양하고 흥미로운 실내외 미세먼지 측정과 관리 기술에 대한 여러 연구들을 소개한다. 이를 통하여 실내외 미세먼지 측정과 관리 기술에 대한 현 주소를 파악하고 참여 연구그룹의 연구 결과에 대한 정보 공유에 본 특별호가 기여하길 기대한다. 더불어 미세먼지에 관련한 지속적인 연구주제 발굴과 국가적인 지원을 이끌어 내기 위한 관련 전문가들의 노력을 기대한다.

유아교육시설의 표면 및 공기 중 납 농도 평가 (Evaluation of Airborne and Surface Lead Concentrations in Preschool Classroom)

  • 윤충식;백도현
    • 한국환경보건학회지
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2006
  • This study was performed to investigate airborne lead concentration and surface lead contents in preschool facilities. Arithmetic mean of indoor lead concentration in urban area was $44.7\;ng/m^3$ (Geometric mean $32.1\;ng/m^3$) whereas outdoor concentration was $39.5\;ng/m^3$ (GM $22.8\;ng/m^3$). In rural area, airborne lead concentrations were $14.2\;ng/m^3\;(GM\;7.9 ng/m^3),\;12.6\;ng/m^3\;(GM\;5.6 ng/m^3)$, respectively. There is statistical significance of the lead concentrations among the locations of preschool facilities. About $37\%$ of qualitative lead check samples was positive and mainly was found in lead based paint. Though lead concentrations on the floor and window sill were well below the US EPA and HUD standard (floor $40\;{\mu}g/ft^2\;(4.3\;{\mu}g/100\;cm^2)$, window sill $250\;{\mu}g/ft^2\;(26.9\;{\mu}g/100\;cm^2)$, respectively), there were much samples which exceed the standard, i.e., $29\%$ of surface wall, $20\%$ of the desk and chair, $100\%$ of painted wood box of tested samples. In view of our study and hazard of lead to children, we recommended that the contents of lead in preschool facilities should be lowered as possible.