• Title/Summary/Keyword: Indoor air purification

Search Result 62, Processing Time 0.019 seconds

Study on the Properties of Functional Cement Matrix using Phytoncide (피톤치드를 함유한 기능성 시멘트 경화체의 특성에 관한 연구)

  • Kim, Hyeon-Sung;Kim, Sun-A;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.29-30
    • /
    • 2018
  • The development of the industry has increased the indoor living time of modern people. Therefore, indoor pollution is attracting attention as a social issue. One of the indoor air pollution is formaldehyde. Formaldehyde has been classified as a first-level carcinogen by international cancer research organizations. Formaldehyde has been used to protect products such as construction materials and finish materials, and being diffused in the interior construction process. In this study, we used phytoncide with cement matrix to reduce formaldehyde, an indoor environmental contaminant. The strengths was increased slightly and formaldehyde showed a reduction effect over time.

  • PDF

Study on Particulate Pollutant Reduction Characteristics of Vegetation Biofilters in Underground Subway Stations (지하역사내 식생바이오필터의 입자상 오염물질 저감특성 연구)

  • Kim, Tae Han;Oh, Ji Eun;Kim, Mi Ju
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.99-105
    • /
    • 2022
  • Public attention to the indoor environment of underground subway stations, which is a representative multi-use facility, has been increasing along with the increase in indoor activities. In underground stations, fine iron oxide, which affects the health of users, is generated because of the friction between wheels and rails. Among particulate pollutant reduction technologies, plants have been considered as a non-chemical air purification method, and their effects in reducing certain chemical species have been identified in previous studies. The present study aimed to derive the total quantitative and qualitative reduction effects of a bio-filter system comprising air purifying plants, installed in an underground subway station. The experiment proceeded in two ways. First, PM(particulate matter) reduction effect by vegetation biofilter was monitored with the IAQ(indoor air quality) station. In addition, chemical speciation analysis conducted on the samples collected from the experimental and control areas where plants and irrigation using SEM-EDS(scanning electron microscopy-energy dispersive X-ray spectroscopy). This study confirmed the effect of the vegetation bio-filter system in reducing the accumulation of particulate pollutants and transition and other metals that are harmful to the human body.

A Study on User's Opinion for Designing of Multi-Functional Plant Applications (복합적 기능의 식물 애플리케이션 디자인을 위한 사용자 조사)

  • Lee, Ha Na;Park, Han Na;Paik, Jin Kyung
    • Korea Science and Art Forum
    • /
    • v.37 no.4
    • /
    • pp.297-308
    • /
    • 2019
  • Air pollution due to the fine dust level updating every day, and the problem of indoor air pollution due to ventilation difficulties and indoor discharge pollutants is also serious. In order to improve the indoor air quality, the air purification effect using the plants is prominent. In this study was started to investigated the living environment of modern people, the risk of indoor air pollution and the improvement function of plants, and to activate plant application. The purpose of this study is to analyze the main functions and design status of domestic and overseas plant - related applications, and to understand the actual use of modern plant applications and to help them learn more convenient plant - related knowledge. Therefore, this paper attempted to establish a basis for suggesting a new plant application by conducting a survey on the health effects of indoor air pollution and user awareness of plant - related applications. The results and contents of the study are as follows. First, as a theoretical review, indoor air pollution is more dangerous to modern people who have a high proportion of indoor living time and adversely affects their health. In order to solve such a problem, it has been shown that air conditioning and stress reduction can be effectively achieved by placing plants in the indoor space. Second, the analysis of the previous study shows the risk of indoor air pollution and its adverse effects on health. In addition, I have been able to find some researches related to the improvement of the indoor air by using the air purifying plants, and I can see the improvement of the user's behavior through the development or improvement of the application. Third, as a result of the survey on the status of domestic and overseas plant application, the main function of the application having high installation number was watering notification, provision of basic information of plants, and most of the functions were plant discerment through cameras. Fourth, most of the survey respondents have either raised or raised plants. Those who have little experience with plant applications have also shown positive feedback in the future on the use of plant-related applications. In addition, due to social problems such as air pollution, air purification using plants and functional plants showed high interest. Based on these results, we propose the need for a multi-functional plant application that can improve the indoor air pollution and facilitate the provision of information related to it.

Purification of BTEX at Indoor Air Levels Using Carbon and Nitrogen Co-Doped Titania under Different Conditions

  • Jo, Wan-Kuen;Kang, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1321-1331
    • /
    • 2012
  • To date, carbon and nitrogen co-doped photocatalysts (CN-$TiO_2$) for environmental application focused mainly on the aqueous phase to investigate the decomposition of water pollutants. Accordingly, the present study explored the photocatalytic performance of CN-$TiO_2$ photocatalysts for the purification of indoor-level gas-phase aromatic species under different operational conditions. The characteristics of prepared photocatalysts were investigated using X-ray diffraction, scanning emission microscope, diffuse reflectance UV-VIS-NIR analysis, and Fourier transform infrared (FTIR) analysis. In most cases, the decomposition efficiency for the target compounds exhibited a decreasing trend as input concentration (IC) increased. Specifically, the average decomposition efficiencies for benzene, toluene, ethyl benzene, and xylene (BTEX) over a 3-h process decreased from 29% to close to zero, 80 to 5%, 95 to 19%, and 99 to 32%, respectively, as the IC increased from 0.1 to 2.0 ppm. The decomposition efficiencies obtained from the CN-$TiO_2$ photocatalytic system were higher than those of the $TiO_2$ system. As relative humidity (RH) increased from 20 to 95%, the decomposition efficiencies for BTEX decreased from 39 to 5%, 97 to 59%, 100 to 87%, and 100 to 92%, respectively. In addition, as the stream flow rates (SFRs) decreased from 3.0 to 1.0 L $min^{-1}$, the average efficiencies for BTEX increased from 0 to 58%, 63 to 100%, 69 to 100%, and 68 to 100%, respectively. Taken together, these findings suggest that three (IC, RH, and SFR) should be considered for better BTEX decomposition efficiencies when applying CN-$TiO_2$ photocatalytic technology to purification of indoor air BTEX.

Development of an IAQ Index for Indoor Garden Based IoT Applications for Residents' Health Management (실내거주자 건강 관리를 위한 IoT기반 실내정원용 IAQ지수 개발)

  • Lee, Jeong-Hun;An, Sun-Min;Kwak, Min-Jung;Kim, Kwang Jin;Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.5
    • /
    • pp.421-432
    • /
    • 2018
  • Objectives: In this study, we started to develop an indoor garden integrated IoT solution based on IAQ (indoor air quality) and interconnection with an environmental database for smart management of indoor gardens. The purpose of this study was to develop and apply an integrated solution for customized air purification from an indoor garden through big data analysis using IoT technology. Methods: An IoT-based IAQ monitoring system was established in three households within a new apartment building. Based on real-time and long-term data collected, $PM_{2.5}$, $CO_2$, temperature, and humidity changes were compared to those of indoor garden applications and the analyzed results were indexed. Results As a result of the installation, all three households had no results exceeding the standard for indoor air pollution on average $PM_{2.5}$ and $CO_2$ indices. In the case of indoor garden installation, the IAQ index increased to the "Good" section after the installation, and readings in the "Bad" section shown before the installation disappeared. The comfort index also did not dip into the "Uncomfortable" section, where it had been preinstallation, and significantly lowered the average score from "Uncomfortable for sensitive groups" to "Good". Overall, the IAQ composite index for the generation of installations decreased the "Good" interval, but "Bad" did not appear. Conclusions In this study on developing an integrated solution for IAQ based on IoT indoor gardens, big data was analyzed to determine IAQ and comfort indexes and an IAQ composite index. Through this process, it became understood that it is necessary to monitor IAQ based on IoT.

Assessment of Volatile Organic Compound Reduction Using an Air Purification Facility in an Adhesive Handling Process (접착제 취급 작업장 내 공기정화 설비를 이용한 휘발성 유기화합물 저감 평가)

  • Jaemin Woo;Dongjun Kim;Jihun Shin;Gihong Min;Chaekwan Lee;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.78-88
    • /
    • 2023
  • Background: Exposure to volatile organic compounds (VOCs) can have acute and chronic health effects on human beings in general and in working environments. In particular, VOCs are often emitted in large quantities in industrial settings. In such circumstances, there is a need to improve the indoor air quality at workplaces. Objectives: The purposes of this study were to verify the effectiveness of air cleaning devices in workplaces and provide alternative solutions for improving working environments. Methods: Personal exposure and area level of VOCs for workers were evaluated in a car-part adhesive process before and after installing an air cleaning device with a TiO2-coated filter. Passive samplers and direct reading instruments were used to collect and analyze the VOCs, and the removal efficiency and improvement of air quality were evaluated. We also calculated the exposure index (EI) to assess the risk level in the workplace. Results: The removal efficiency for VOCs through the installation of the air cleaning device was approximately 26.9~69.0% as determined by the concentration levels before and after installation. The measured substances did not exceed the exposure limits for the work environment and the EI was less than 1. However, carcinogenic substances such as benzene, formaldehyde, carbon tetrachloride, and trichloroethylene were detected. Conclusions: The application of an air cleaning device can be a solution for controlling the indoor air quality in a workplace, particularly in cases where ventilation systems cannot be installed due to process limitations.

Comparing the Effects of Ventilation and Air Purification Plants on Radon Concentration in the Lower and Upper Floors of a Building (건물 저층과 고층에서 환기와 공기정화 식물을 통한 라돈 농도의 비교)

  • Gong, Yu-jin;Nam, So-Yeong;Shin, Min-Seo;Jang, Hey-Rim;Jeon, Min-Cheol;Yoo, Se-Jong;Kim, Seong-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.881-889
    • /
    • 2020
  • The objective of this study was to quantitatively measure the changes in radon concentration due to ventilation and air purification plants in the lower and upper floors of a building. This study measured and compared radon concentration in the lower and upper floors of the building by using a radon meter when the room was closed, it was ventilated, and air purification plants were installed at a specific time. One-way ANOVA was conducted to evaluate the effect of treatment (i.e., closure, ventilation, and air purification plants) on radon concentration. The results of this study showed that ventilation and air purification plants significantly decreased radon concentration in the lower and upper floors of the building, but the effect of ventilation and that of air purification plants were not significantly different. Therefore, it will be possible to reduce radon concentration effectively when ventilation and air purification plants are used appropriately.

A Study on the Control Performance for Hazardous Gases by Surface Discharge induced Plasma Chemical Process (연면방전의 플라즈마 화학처리에 의한 유해가스제어 성능에 관한 연구)

  • 이주상;김신도;김광영;김종호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.185-190
    • /
    • 1995
  • Recently, because of the worse of the air pollution, the excessive airtught of building and the inferiority of air conditioning system, the development of high efficiency air purification technology was enlarged to the environmental improvement of an indoor or a harmful working condition. The air purification technology has used chemical filters or charcoal filters or charcoal to remove hazardouse gaseous pollutants (SO$_{x}$, NO$_{x}$, NH$_{3}$, etc.) by air pollutant control technology, but they have many problems of high pressure loss, short life, wide space possession, and treatment of secondary wastes. For these reason, the object of reasearch shall be hazardous gaseous pollutants removal by the surface discharge induced plasma chemical process that is A.C. discharge of multistreams applied A.C. voltage and frequency between plane induced eletrode and line discharge eletrode of tungsten, platinum or titanium with a high purified alumina sheet having a film-like plane. As a result, the control performance for hazardous gaseous pollutants showed very high efficiency in the normal temperature and pressure. Also, after comtact oxidation decomposition of harmful gaseous pollutants, the remainded ozone concentration was found much lower than that of ACGIH or air pollution criteria in Korea.rea.

  • PDF

Efficiency of Removal of Indoor Pollutants by Pistia stratiotes, Eichhornia crassipes and Hydrocotyle umbellata

  • Park, Hye-Min;Lee, Ae-Kyung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, we compared efficiency of different aquatic plants in removing indoor pollutants and examined their potential to purify indoor air. Two liter of water in chamber was used as the control, while the other chambers containing water lettuce (Pistia stratiotes), water hyacinth (Eichhornia crassipes), and water coin (Hydrocotyle umbellata) were used as treatment groups. Temperatures inside all the chambers were maintained between 20 ℃ and 23 ℃. Humidity in the chambers with aquatic plants increased by 30% and 50% control respectively. The removal of formaldehyde per unit leaf area was examined in each aquatic plant. It turned out that water hyacinth removed the highest amount of formaldehyde, followed by water lettuce and water coin. Both water hyacinth and water lettuce increased the amount of removal of formaldehyde until the end of the experiment. In the case of airborne dust (PM 10) and fine dust (PM 2.5), water coin, which had the highest number of leaves, removed more PM 10 and PM 2.5 than the other aquatic plants, with statistically significant difference. In addition, both water coin and water hyacinth smoothly opened and closed stomata before and after the experiment. Consequently, as the aquatic plants were effective in controlling humidity and removing pollutants, they can be used as air purifying plants.