• Title/Summary/Keyword: Indoor Wireless Location

Search Result 177, Processing Time 0.028 seconds

A study on the discriminant analysis of node deployment based on cable type Wi-Fi in indoor (케이블형 Wi-Fi 기반 실내 공간의 노드 배치 판별 분석에 관한 연구)

  • Zin, Hyeon-Cheol;Kim, Won-Yeol;Kim, Jong-Chan;Kim, Yoon-Sik;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.836-841
    • /
    • 2016
  • An indoor positioning system using Wi-Fi is essential to produce a radio map that combines the indoor space of two or more dimensions, the information of node positions, and etc. in processing for constructing the radio map, the measurement of the received signal strength indicator(RSSI) and the confirmation of node placement information counsume substantial time. Especially, when the installed wireless environment is changed or a new space is created, easy installation of the node and fast indoor radio mapping are needed to provide indoor location-based services. In this paper, to reduce the time consumption, we propose an algorithm to distinguish the straight and curve lines of a corridor section by RSSI visualization and Sobel filter-based edge detection that enable accurate node deployment and space analysis using cable-type Wi-Fi node installed at a 3 m interval. Because the cable type Wi-Fi is connected by a same power line, it has an advantage that the installation order of nodes at regular intervals could be confirmed accurately. To be able to analyze specific sections in space based on this advantage, the distribution of the signal was confirmed and analyzed by Sobel filter based edge detection and total RSSI distribution(TRD) computation through a visualization process based on the measured RSSI. As a result to compare the raw data with the performance of the proposed algorithm, the signal intensity of proposed algorithm is improved by 13.73 % in the curve section. Besides, the characteristics of the straight and the curve line were enhanced as the signal intensity of the straight line decreased by an average of 34.16 %.

System Capacity and Coverage Analysis of Hierarchical Femtocell Networks (펨토셀 기반 계층셀 구조 시스템 용량 및 서비스 반경 분석)

  • O, Nam-Geol;Kim, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.476-483
    • /
    • 2009
  • Recently much attention has been devoted to femtocell's potential to improve indoor cellular coverage and high speed wireless communications. Femtocell based commercial services have been already launched in some countries and standardization activities are actively on-going, there has been concern however over potential issues of interference between femtocells and the micro/macro networks. With universal frequency reuse, the ensuing cross-tier interference causes unacceptable data rate and outage probability, so an analysis of effect of interference in femtocell embedded networks would be necessary for a stable system design. This paper investigates the effect of interference on system performances of femtocell embedded hierarchical cell structure (HCS) networks considering the characteristics of propagation environments. Various channel parameters are specially considered for indoor environments where most of femtocells are deployed to investigate the effect of interference of femtocell embedded RCS networks. System capacity and coverage are provided with variant distance between macrocell and femtocell, location of the user in femtocell coverage, and characteristic of building structures.

Positioning using ZigBee and Ultrasound

  • Park, Chan-Sik;Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Cha, En-Jong;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.217-222
    • /
    • 2006
  • To find a location, GPS has been wildly used. But, it is hard to use in indoor because of very weak signal level. To meet indoor requirements, there have been many studies applying wireless communication networks such as WLAN, UWB and ZigBee. Among these, ZigBee is widely adopted in many WSN applications because it has an advantage of low-power and low-cost. In ZigBee, the RSSI is used as range measurement for ad-hoc network. The RSSI are converted to ranges using the signal attenuation model and these ranges become inputs of positioning methods. The obtained position with RSSI has large error because of its poor accuracy. To overcome this problem, ultrasonic sensors are added in many researches. By measuring the arrival time difference of ZigBee and ultrasound as a range measurement, the precise position can be found. However, there are still many problems: scheduling of beacons to transmit signals in a correct order, addition and synchronization of beacons and low-rate positioning rate. At this paper, an efficient method to solve these problems is proposed. In the proposed method, a node transmits ZigBee and ultrasound signal simultaneously. And beacons find the range with the received signals and send it back to a node with ZigBee. The position is computed in a node with the received ranges. In addition, a new positioning algorithm to solve the risk of the divergence in the linearization method and the singularity problem in the Savarese method is presented. Both static and dynamic experimental results show 0.02m RMS errors with high output rate.

  • PDF

Design of efficient location system for multiple mobile node in the indoor wireless sensor network (실내 무선 센서네트워크에서의 효과적인 다중 이동 노드 위치인식 시스템 설계)

  • Kim Ki-Hyeon;Ha Bong-Soo;Kim Tae-Hwan;Lee Yong-Doo;Hong Won-Kee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.397-399
    • /
    • 2005
  • 무선 센서노드를 활용한 다양한 네트워크 설계 기술은 실생활의 각종 정보 수집에서부터 환경 모니터링까지 폭넓은 활용범위를 바탕으로 저전력 노드 설계 기술, 노드간 라우팅 프로토콜, 초소형 운영체제 및 미들웨어기술 등 관련 연구가 활발히 수행되고 있으며, 실내 센서네트워크에 분포된 노드의 절대위치를 측정하는 위치인식 시스템은 노드의 이동성, 다수성 그리고 환경의 제약성으로 인해 이를 보완할 시스템이 요구되고 있다. 이에 본 논문에서는 고정 센서노드의 배치밀도에 따라 위치정보를 선별적으로 처리하는 위치데이터 처리기와 다중 위치데이터의 발생을 원천적으로 차단하는 노드간 라우팅 기법을 통해, 센서노드의 이동성과 다중성을 효과적으로 보완하는 실내 이동객체 위치인식 시스템을 설계하고 서비스 구현을 위한 센서네트워크 플랫폼을 제안한다.

  • PDF

Optimal Measuring Point Selection Method of Indoor Temperature using CFD Analysis (CFD 해석을 이용한 실내 온도 최적 측정 위치 선정 방법)

  • Lee, Min-Goo;Jung, Kyung-Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1559-1566
    • /
    • 2012
  • This paper proposed the method to find out the optimal sensing point of temperature in test-bed with the sensor of temperature, such as real residence. We selected optimal locations by checking temperature change which was simulated by the means of CFD (Computational Fluid Dynamics) and the variation of air flow. We made 3-dimensional model of the testbed using DesignBuilder software, and ran the CFD. We selected the optimum temperature measurement location of 1.5 m height from the floor and low temperature variation. The experiments were conducted 30 temperature and humidity sensors in real place. After that, we confirmed the results of temperature change.

Development of Complex USN Sensor for Zero Energy House with Blind System (블라인더가 설치된 제로에너지 하우스를 위한 복합 USN 센서 개발)

  • Kim, Kee-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • In this paper, zero-energy house in order to monitor the energy savings come with Zigbee communication temperature humidity, smoke detection, illumination and CO2 to develop complex sensor board a protocol for handling about it dealt. In particular, indoor space to mount the sensor based on the location of the control algorithm, so it varies through the Zigbee wireless sensor mounting position is free, and the advantage of being able to change. Also, the energy loss that occurs through the window can be reduced to the room lighting can play an important role in the control system.

A Forward Link ADA Positioning method for mobile Robots (이동 로봇을 위한 순방향 링크 AOA 측위 방법)

  • Kim, Dong-Hyouk;Song, Seung-Hun;Roh, Gi-Hong;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.603-608
    • /
    • 2007
  • In the conventional AOA(angle-of-arrival) positioning utilizing reverse-link wireless channel, each sensor should be equipped with an array antenna to measure the incident angle of signal transmitting from a tag. To perform the complicated signal processing for angle measurements, sensor size and its power consumption will be large. In some applications like mobile robot location, there exists no strict restriction in tag size or in power consumption. Rather, it is desirable that the sensor would be as small as possible. This paper presents a new AOA positioning method utilizing forward-link channel. Under the assumption that the mobile robot is operating on the flat surface, the measurement model for FLAOA(tiJrward-link AOA) is derived first. Two kinds of position estimation algorithms using FLAOA measurements are proposed; Gauss-Newton method and closed-fonn solution method. With the proposed methods, we can ohtain the attitude of robot as well as its position. Positioning performance of proposed methods is compared by computer simulation. Simulation results show that the closed-form solution method using FLAOA measurements is suitable for indoor robot positioning.

Performance Analysis of the Wireless Localization Algorithms Using the IR-UWB Nodes with Non-Calibration Errors

  • Cho, Seong Yun;Kang, Dongyeop;Kim, Jinhong;Lee, Young Jae;Moon, Ki Young
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.105-116
    • /
    • 2017
  • Several wireless localization algorithms are evaluated for the IR-UWB-based indoor location with the assumption that the ranging measurements contain the channelwise Non-Calibration Error (NCE). The localization algorithms can be divided into the Model-free Localization (MfL) methods and Model-based Kalman Filtering (MbKF). The algorithms covered in this paper include Iterative Least Squares (ILS), Direct Solution (DS), Difference of Squared Ranging Measurements (DSRM), and ILS-Common (ILS-C) methods for the MfL methods, and Extended Kalman Filter (EKF), EKF-Each Channel (EKF-EC), EKF-C, Cubature Kalman Filter (CKF), and CKF-C for the MbKF. Experimental results show that the DSRM method has better accuracy than the other MfL methods. Also, it demands smallest computation time. On the other hand, the EKF-C and CKF-C require some more computation time than the DSRM method. The accuracy of the EKF-C and CKF-C is, however, best among the 9 methods. When comparing the EKF-C and CKF-C, the CKF-C can be easily used. Finally, it is concluded that the CKF-C can be widely used because of its ease of use as well as it accuracy.

Design of O2O service platform using BLE beacon (BLE 비콘을 활용한 O2O 서비스 플랫폼의 설계)

  • Yoon, Dong-Eon;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1457-1462
    • /
    • 2021
  • Untact order payment has become a new normal since the COVID-19. BLE beacon is a technology that supports low-power wireless communication within 70 meters without Bluetooth pairing and is specialized for indoor positioning. Therefore, it is suitable for building and providing O2O services beyond B2C and B2B services. However, beacons have a lower utilization rate because they have fewer platforms than wifi that support long-distance wireless communication. Therefore, this paper aims to provide more convenient non-face-to-face related services than before by designing and proposing an O2O service platform using BLE beacons. When scanning beacons, not only does it receive advertising data that beacons have, but it also ensures that the actual distance between the user's terminal and beacons is accurately calculated. Through accurate location, the O2O service platform will be able to provide users with store information, such as coupons and discounts, museum exhibits, and traffic information at the right time.

Localization Algorithms for Mobile Robots with Presence of Data Missing in a Wireless Communication Environment (무선통신 환경에서 데이터 손실 시 모바일 로봇의 측위 알고리즘)

  • Sin Kim;Sung Shin;Sung Hyun You
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.601-608
    • /
    • 2023
  • Mobile robots are widely used in industries because mobile robots perform tasks in various environments. In order to carry out tasks, determining the precise location of the robot in real-time is important due to the need for path generation and obstacle detection. In particular, when mobile robots autonomously navigate in indoor environments and carry out assigned tasks within pre-determined areas, highly precise positioning performance is required. However, mobile robots frequently experience data missing in wireless communication environments. The robots need to rely on predictive techniques to autonomously determine the mobile robot positions and continue performing mobile robot tasks. In this paper, we propose an extended Kalman filter-based algorithm to enhance the accuracy of mobile robot localization and address the issue of data missing. Trilateration algorithm relies on measurements taken at that moment, resulting in inaccurate localization performance. In contrast, the proposed algorithm uses residual values of predicted measurements in data missing environments, making precise mobile robot position estimation. We conducted simulations in terms of data missing to verify the superior performance of the proposed algorithm.