• Title/Summary/Keyword: Indoor Radon Pollution

Search Result 32, Processing Time 0.023 seconds

Towards Quantitative Assessment of Human Exposures to Indoor Radon Pollution from Groundwater

  • Donghan Yu;Lee, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.43-51
    • /
    • 2001
  • A report by the national research council in the United States suggested that many lung cancer deaths each year be associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundations. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the quantitative assessment of human exposures to radon released from the groundwater into indoor air. At first, a three-compartment model is developed to describe the transfer and distribution of radon released from groundwater in a house through showering, washing clothes, and flushing toilets. Then, to estimate a daily human exposure through inhalation of such radon for an adult. a physiologically-based pharmacokinetic(PBPK) model is developed. The use of a PBPK model for the inhaled radon could provide useful information regarding the distribution of radon among the organs of the human body. Indoor exposure patterns as input to the PBPK model are a more realistic situation associated with indoor radon pollution generated from a three-compartment model describing volatilization of radon from domestic water into household air. Combining the two models for inhaled radon in indoor air can be used to estimate a quantitative human exposure through the inhalation of indoor radon for adults based on two sets of exposure scenarios. The results obtained from the present study would help increase the quantitative understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Sensitivity and Uncertainty Analysis of Two-Compartment Model for the Indoor Radon Pollution (실내 라돈오염 해석을 위한 2구역 모델의 민감도 및 불확실성 분석)

  • 유동한;이한수;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.327-334
    • /
    • 2002
  • The work presents sensitivity and uncertainty analysis of 2-compartment model for the evaluation of indoor radon pollution in a house. Effort on the development of such model is directed towards the prediction of the generation and transfer of radon in indoor air released from groundwater. The model is used to estimate a quantitative daily human exposure through inhalation of such radon based on exposure scenarios. However, prediction from the model has uncertainty propagated from uncertainties in model parameters. In order to assess how model predictions are affected by the uncertainties of model inputs, the study performs a quantitative uncertainty analysis in conjunction with the developed model. An importance analysis is performed to rank input parameters with respect to their contribution to model prediction based on the uncertainty analysis. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor pollution by radon released from groundwater.

Radon adsorption properties of cement board using anthracite (안트라사이트를 혼입한 시멘트 보드의 라돈흡착 특성)

  • Kyoung, In-Soo;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.232-233
    • /
    • 2018
  • Among the recent environmental pollution, indoor air pollution has an adverse effect on the health of indoor residents. Radon, one of the causes of indoor air pollution, is released from concrete, gypsum board and asbestos slate among building materials. Radon is a primary carcinogen and is a colorless, tasteless, odorless inert gas that adheres to airborne dust and enters the body through breathing. At this time, there is a risk of developing cancer if the alpha rays from the lononggas entering the human body destroys the lung tissue and is continuously exposed to a high concentration of lonon gas. The World Health Organization (WHO) has emphasized the reduction of radon and its exposure to radon by classifying it as a first-level carcinogen, but many people have not recognized it yet, and the research is underdeveloped. Therefore, this study was carried out to investigate the properties of adsorbed coconut radon to prevent the inflow of radon gas, which is an air pollution source of indoor air, and to prevent inflow into the human body.

  • PDF

Adsorption properties of non-cement boards using adsorbent (흡착재를 활용한 흡착형 무시멘트 보드의 흡착 특성)

  • Pyeon, Su-Jeong;Lim, Hyun-ung;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.226-227
    • /
    • 2018
  • Recently, as the interest of the government and the public on energy saving has increased, the airtightness of buildings has been improved to improve the insulation performance of buildings. However, indoor air pollution due to increase of pollution source in indoor space and lack of ventilation is increasing and interest in indoor air quality is increasing. In 2003, the Ministry of Environment enacted and promulgated the Act on Indoor Air Quality Control in Multi-use Facilities. Radon is a naturally occurring radioactive inert gas with colorless, tasteless and odorless nature. The concentration is high in a room where radon can not escape. Although lononggas is naturally occurring, it is not interested in living environment, but it is easily inhaled through human body through respiration and causes lung cancer in long-term exposure. Therefore, this study intends to carry out an experiment for the reduction of radon gas, which is the first carcinogen in indoor air pollution sources.

  • PDF

Assessment of Human Exposures to Indoor Radon Released from Groundwater (지하수로부터의 실내 라돈오염시 인체노출평가)

  • 유동한;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 2001
  • A report by the National Research Council in the United States suggested that many lung cancer deaths each year are associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundation. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the assessment of a exposure to radon released from the groundwater into indoor air. At first, a 3-compartment model is describe the transfer and distribution if radon released from groundwater in a house through showering, washing clothes, and flushing toilets. The model is used to estimate a daily human exposure through inhalation of such radon for adults based on two sets of exposure scenarios, Finally, a sensitivity analysis is used to identify important parameters. The results obtained from the study would help to increase the understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Quantitative Exposure Assessment of Indoor Radon Released from Groundwater (지하수로부터의 실내 라돈오염에 의한 정량적인 인체노출평가)

  • Yu, Dong-Han;Kim, Sang-Joon
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.79-86
    • /
    • 2001
  • This study presents the quantitative exposure assessment of indoor radon released from groundwater. Most of the Indoor radon comes directly from soil beneath the basement or foundation. Recently, radon in groundwater releases to indoor air whenever the water is used and contributes to the total inhalation risk from indoor air. This study first develops a mathematical model to describe the transfer and distribution of radon released from groundwater in a house. Then, daily human exposures through inhalation or such radon are estimated with the model for an male adult based on two sets of exposure scenarios. The results obtained from the study would help increase the understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Air Content and Fluidity Properties of Cement Matrix according to Anthracite Particle-size (안트라사이트 입도에 따른 시멘트 경화체의 공기량 및 유동성 특성)

  • Kyoung, In-Soo;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.92-93
    • /
    • 2017
  • Recently, there has been an increasing interest in natural radioactive gas radon(Rn-222), the problem of indoor air quality pollution to worldwide. It has been scientifically proven to be hazardous to various diseases such as lung cancer and skin cancer if the human body is exposed to long-term accumulation of atomic nuclei due to the destruction of radon and alpha lines. Based on the indoor air quality control policy, this study is a basic experiment in the manufacture of a selective elimination function to containing radon adsorption and reduction of radon concentration, which is used to absorb radioactive isotopes such as phosphorus and radon in indoor environment.

  • PDF

Comparative risk analysis for priority ranking of environmental problems in Seoul

  • Kim, Ye-Shin;Lee, Yong-Jin;Park, Hoa-Sung;Lim, Young-Wook;Shin, Dong-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.169-169
    • /
    • 2003
  • In Korea, there is no CRA studies and has not well known CRA and not well established their methodologies. Therefore, objectives of this study is to establish the framework of CRA consisting of health risk, economic risk and perceived risk and the detail methodologies of three main component of estimating and comparing those risks for on the three environmental problems of air pollution, indoor air pollution and drinking water contamination which being subjective to the eight sub-problems of hazardous ai. pollutants (HAPs), regulated pollutants (representative as PM10) and Dioxins (PCDDS/ PCDFs) in air pollution, and indoor ai. pollutants (IAPs) and Radon in indoor air pollution, and drinking water pollutants (DWPs), disinfection-by- products(DBPs) and radionuclides in drinking water contamination in Seoul, Korea. And then, their problems set priorities by individual and integrated risk. As a results, ranking of health risk were the following order of indoor air pollution, air pollution and then drinking water contamination, in three environmental problems and of radon, PM10, IAPs, HAPs, DWPs, Dioxins, DBPs, and then radionuclides in eight sub-problems. And that of economic risk were the same order. In the contrary, ranking of perceived risk were the following order of air pollution, drinking water contamination, and then indoor air pollution, and of HAPs, Dioxins, radionuclides, PM10, DWPs, IAPs, Radon and then DBPs.

  • PDF

Comparative Risk Analysis for Priority Ranking of Environmental Problems (환경 문제의 우선 순위 도출을 위한 비교 위해도 분석에 관한 연구)

  • 김예신;임영욱;남정모;장재연;이동수;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.4
    • /
    • pp.285-298
    • /
    • 2002
  • In Korea, no CRA (comparative risk analysis) studies have been undertaken, nor have their methodologies of such studies been established. Therefore, the objectives of this study were to establish the framework of CRA consisting of health risk, economic risk and perceived risk, and to estimate and compare these risks among the three environmental problems of air pollution, indoor air pollution and drinking water contamination, which are themselves subject to the eight sub -problems of hazardous air pollutants (HAPs), regulated pollutants (representative as PM 10) and dioxins (PCDDs/PCDFs) in air pollution, indoor air pollutants (IAPs) and radon in indoor air pollution, and drinking water pollutants (DWPs), disinfection by -products (DBPs) and radionuclides in drinking water contamination in Seoul, Korea. After which, the priorities of these problems were set by individual and integrated risk. From the results, the rankings of both health risk and economical risk were in the following order: radon, PM10, IAPs, HAPs, DWPs, dioxins, DBPs, and radionuclides among the eight sub problems. On the contrary, the ranking of perceived risk was in the following order: HAPs, dioxins, radionuclides, PM10, DWPs, IAPs, Radon and then DBPs among the eight sub-problems.