• Title/Summary/Keyword: Indoor Propagation

Search Result 171, Processing Time 0.032 seconds

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.772-772
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.722-733
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

  • PDF

Assessment for Ingredients and Amount of Radiofrequency Electromagnetic Field Exposure for Indoor Environment in an Institution for the Aged of Downtown (도심지역 노인복지시설 실내 환경에 대한 RF 전자파 노출량의 정성.정량 평가에 관한 연구)

  • Choi, Jung-Hun;Kim, Nam;Hong, Seung-Cheol;Kim, Yoon-Shin;Choi, Sung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.268-274
    • /
    • 2006
  • In this study in order to evaluate the growth of RF propagation exposure rate generated according to the enhancement of its use, it is proposed for the ground to be able to examine and to contemplate the correlation between the human health and RF propagation exposure rate by measuring and analyzing the RF exposure source and exposure rate in an indoor environment. As a result of research, it is analyzed that the main exposure source of critically making effect in indoor environment is the frequency hand if radio broadcasting, mobile communication, wireless LAN, digital broadcasting, home appliance, etc., including the TV broadcasting. Among these, it is shown that the TV broadcasting and mobile communication band are the highest. And it is the concluded that RF exposure rate of the environmental sensitive equipment, like an institution for the aged, has lower possibility to exceed the human RF protection criteria by this evaluation.

A Simulator Development of Generating Polarization Waves for The Indoor Wireless Communications (옥내 무선통신을 위한 편파발생 시뮬레이터 개발)

  • 이주현;하덕호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.872-878
    • /
    • 2003
  • In this paper, we developed a simulator which can generate the polarization waves for the indoor wireless communications based on three dimensional ray tracing technique and verified the simulation results comparing with the measured data in indoor wireless propagation environments. Using the developed simulator, we analyzed the channel characteristic and polarization diversity reception characteristic for the vertical, horizontal and circularly polarized waves. From the analysis results, in the case of using circularly polarized wave it can be clearly seen that the multipath fading is markedly reduced compared to the vertical and horizontal polarized waves due to the reception characteristic of removing the odd time reflected waves.

Analysis of Loss Factor for Statistical Modeling for Indoor Environment (실내 환경에서 통계적 모델링을 위한 손실인자 분석)

  • 이권익;홍성욱;강부식;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.865-868
    • /
    • 1999
  • In this paper, indoor propagation characteristics are analyzed for various environments such as corridors, walls and corners. In order to present the statistical model for indoor environments the loss factors of each case are obtained by linear regression analysis method with the function of logarithmic distance between transmitter and receiver.

  • PDF

Millimeter-wave directional-antenna beamwidth effects on the ITU-R building entry loss (BEL) propagation model

  • Lee, Juyul;Kim, Kyung-Won;Kim, Myung-Don;Park, Jae-Joon;Yoon, Young Keun;Chong, Young Jun
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Assuming omnidirectional antenna reception, the ITU-R recently developed a new propagation model on building entry loss (BEL) for 5G millimeter-wave frequency sharing and compatibility studies, which is a simplified outdoor-to-indoor path loss model. Considering the utilization of high-gain narrow-beamwidth beamforming, the omnidirectional-based ITU-R BEL model may not be appropriate to predict propagation characteristics for directional beamforming scenarios. This paper studies the effects of beamwidth on the ITU-R BEL model. This study is based on field measurements collected with four different beamwidth antennas: omnidirectional, 10° horn, 30° horn, and 60° horn. The measurement campaigns were conducted at two types of building sites: traditional and thermally efficient buildings. These sites, as well as the measurement scenarios, were carefully chosen to comply with the ITU-R BEL measurement guidelines and the ITU-R building types. We observed the importance of accurate beam alignment from the BEL variation range. We were able to quantify the beamwidth dependency by fitting to a model that is inversely proportional to the beamwidth.

Evaluation of a Fungal Spore Transportation in a Building under Uncertainty

  • Moon, Hyeun Jun
    • Architectural research
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • A fungal spore transportation model that accounts for the concentration of airborne indoor spores and the amount of spores deposited on interior surfaces has been developed by extending the current aerosol model. This model is intended to be used for a building with a mechanical ventilation system, and considers HVAC filter efficiency and ventilation rate. The model also includes a surface-cleaning efficiency and frequency that removes a portion of spores deposited on surfaces. The developed model predicts indoor fungal spore concentration and provides an indoor/outdoor ratio that may increase or decrease mold growth risks in real, in-use building cases. To get a more useful outcome from the model simulation, an uncertainty analysis has been conducted in a real building case. By including uncertainties associated with the parameters in the spore transportation model, the simulation results provide probable ranges of indoor concentration and indoor/outdoor ratio. This paper describes the uncertainty quantification of each parameter that is specific to fungal spores, and uncertainty propagation using an appropriate statistical technique. The outcome of the uncertainty analysis showed an agreement with the results from the field measurement with air sampling in a real building.

Indoor Localization Algorithm using Virtual Access Points in Wi-Fi Environment

  • Labinghisa, Boney;Lee, Dong Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.168-171
    • /
    • 2016
  • In recent years, indoor localization in Wi-Fi environment has been researched for its location determining capability. The fingerprint and RF propagation models has been the main approach in determining indoor positioning. With the use of fingerprint, a low-cost, versatile localization system can be achieved without the use of external hardware. However, only a few research have been made on virtual access points (VAPs) among indoor localization models. In this paper, the idea of indoor localization system using fingerprint with the addition of VAP in Wi-Fi environment is discussed. The idea is to virtually add APs in the existing indoor Wi-Fi system, this would mean additional virtually APs in the network. The experiments of the proposed algorithm shows the positive results when 2VAPs are used compared with only APs. A combination of 3APs and 2VAPs had the lowest average error in all 4 scenarios with 3.99 meters.

Indoor Positioning Technique applying new RSSI Correction method optimized by Genetic Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.186-195
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of indoor positioning techniques using Wi-Fi access points as beacon nodes. The proposed algorithm is based on the Weighted Centroid algorithm, a popular method widely used for indoor positioning, however, it improves some disadvantages of the Weighted Centroid method and also for other kinds of indoor positioning methods, by using the received signal strength correction method and genetic algorithm to prevent the signal strength fluctuation phenomenon, which is caused by the complex propagation environment. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment, and collect a list of Wi-Fi signal strength data from several access points around the standing user location. By utilizing this kind of algorithm, we can obtain a high accuracy positioning system, which can be used in any building environment with an available Wi-Fi access point setup as a beacon node.

Wi-Fi RSSI Heat Maps Based Indoor Localization System Using Deep Convolutional Neural Networks

  • Poulose, Alwin;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.717-720
    • /
    • 2020
  • An indoor localization system that uses Wi-Fi RSSI signals for localization gives accurate user position results. The conventional Wi-Fi RSSI signal based localization system uses raw RSSI signals from access points (APs) to estimate the user position. However, the RSSI values of a particular location are usually not stable due to the signal propagation in the indoor environments. To reduce the RSSI signal fluctuations, shadow fading, multipath effects and the blockage of Wi-Fi RSSI signals, we propose a Wi-Fi localization system that utilizes the advantages of Wi-Fi RSSI heat maps. The proposed localization system uses a regression model with deep convolutional neural networks (DCNNs) and gives accurate user position results for indoor localization. The experiment results demonstrate the superior performance of the proposed localization system for indoor localization.

  • PDF