• Title/Summary/Keyword: Indoor Pollutant

Search Result 141, Processing Time 0.025 seconds

Ammonia and Carbon Dioxide Concentrations in a Layer House

  • Kilic, Ilker;Yaslioglu, Erkan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1211-1218
    • /
    • 2014
  • Higher concentrations of ammonia ($NH_3$) and carbon dioxide ($CO_2$) in animal barns can negatively affect production and health of animals and workers. This paper focuses on measurements of summer concentrations of ammonia ($NH_3$) and carbon dioxide ($CO_2$) in a naturally ventilated laying henhouse located at an egg production facility in Bursa region, western Turkey. Also, indoor and ambient environmental conditions such as temperature and relative humidity were measured simultaneously with pollutant gas concentrations. The average $NH_3$ concentrations during summer of 2013 was 8.05 ppm for exhaust and 5.42 ppm for inlet while average $CO_2$ concentration was 732 ppm for exhaust and 625 ppm for inlet throughout summer. The overall minimum, average and maximum values and humidity were obtained as $16.8^{\circ}C$, $24.72^{\circ}C$, and $34.71^{\circ}C$ for indoor temperature and 33.64%, 63.71%, and 86.18% for relative humidity. The lowest exhaust concentrations for $NH_3$ and $CO_2$ were 6.98 ppm and 609 ppm, respectively. They were measured in early morning at the maximum diurnal ventilation rate in July 2013 and August 2013. The highest concentrations were 10.58 ppm for $NH_3$ and 904 ppm for $CO_2$ recorded in the afternoon when the ventilation rate was the lowest in June 2013.

Evaluation of the Ventilation Efficiency in an Underground Sewage Disposal Plant (지하 수처리시설 유지관리층 환기설비의 성능평가)

  • Kang, Han-Gi;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.695-702
    • /
    • 2007
  • In this paper, the ventilation efficiencies of an underground sewage disposal plant were investigated for ventilating system without fan, ventilating system with eleven cross flow fans and ventilating system with sixteen cross flow fans by numerical method. It has been found that the air change effectiveness of the system without fan was predicted 0.44. It means that an additional ventilating equipment is needed to maintain good indoor air quality. For the ventilating system with sixteen cross flow fans, the air change effectiveness was predicted 0.55. The air change effectiveness of the ventilating system with eleven cross flow fans was predicted 0.51. It is known that the air change effectiveness above 0.5 is enough to eliminate pollutant and bad smell in the indoor. Therefore, it is recommended to select the ventilating system with eleven cross flow fans for the underground sewage disposal plant in an economic point of view.

Ozone Response on Indoor Landscape Plants (실내식물의 오존 반응)

  • 허정희;방광자;설종호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.5
    • /
    • pp.87-92
    • /
    • 2000
  • The purpose of this study is to investigate Ozone which we have to contact in our daily lives. Recently Ozone becomes a serious pollutant in the inside and outside. To select th indicator plants or the purifier plants for air pollution caused by ozone, this stud has been conducted with interior landscape plant of 10 species. The results are as follows; 1) The visible demage by Ozone was firstly observed on Viburnum awabuki among 10 species, and it occurred after the lapse of 10, 8 and 4 hours on 0.5, 1.0 and 2.0 ppm ozone treatment, respectively. The first symptom of visible demage appeared on chlorosis or blotting of leaves, then progressed on necrosis of leaves. 2) On the other hand, Litsea japonica and Ardisia japonica were so resistant against Ozone fumigation that they were not demage independently of Ozone concentration till the lapse of 60 hours. 3) Chlorophyll contents were decreased by the increased Ozone concentration. At this time, grana destruction was observed. The most sensitive plant to ozone was Viburnum awabuki, and we suggest that Viburnum awabuki would be possible one to use for the indicator plant. The most resistance plant to Ozone was Litsea japonic and Ardisia japonica, we suggest that Litsea japonica and Ardisia japonica would be possible to use for the purifier plant for Ozone pollution.

  • PDF

An Experimental Study on the Removal Characteristics of Indoor Air Pollutants using an Air Cleaning System (실내 공기정화 시스템에 의한 실내 오염입자의 제거특성에 관한 실험적 연구)

  • 김성찬;이창건;안영철;이재근;강태욱;이감규;구정환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.733-737
    • /
    • 2003
  • The purpose of this study is to analyze the particle removal characteristics of a commercial air cleaner based on the electrostatic precipitator. The air cleaner consists of a positive corona precharger to precharge particles and a collector to remove the charged particles. The test for particle removal efficiency is conducted with tobacco smoke particles of 1.27${\mu}{\textrm}{m}$ in mass median diameter. The result of one-pass filtration test shows that the filtration efficiency is more than 90% for the particles larger than 2.5 Um, while the efficiency for the particles of 0.5~1.0${\mu}{\textrm}{m}$ in case of 4.18 CMM is 70%. For the test room of 5,800${\times}$3,400${\times}$2,600㎣, the concentration of tobacco smoke particles decreases up to 30% of initial values within 30 minutes due to natural reduction and up to 90% of initial values within 30 minutes with the air cleaner operation.

Removal of Indoor Formaldehyde Using Mesoporous Carbon Activated with KOH (KOH 활성화처리된 메조기공 탄소를 이용한 실내 포름알데히드 제거)

  • Yu, Mi Jin;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • In this study, a mesoporous carbon (CMK-3) activated using KOH was applied to the adsorption of formaldehyde, a representative indoor air pollutant. Activation process was carried out by putting KOH-treated CMK-3 in a reactor maintained at $700^{\circ}C$ in $N_2$ atmosphere. The activated sample was characterized using BET, XRD, XPS and FT-IR analysis. The formaldehyde adsorption performance of the mesoporous carbon was improved, which is attributed to the formation of oxygen and nitrogen functional groups on the mesoporous carbon surface by the activation process.

Health risk assessment by CRPS and the numerical model for toluene in residential buildings

  • Choi, Haneul;Kim, Hyungkeun;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.33-41
    • /
    • 2017
  • Purpose: Indoor air quality in residential buildings needs to be evaluated over the long term. In previous research, there has been an attempt to perform the health risk assessment of pollutants by using numerical models as a method of long-term evaluation. However, the numerical model of this precedent study has limitations that do not reflect the actual concentration distribution. Therefore, this study introduces the CRPS index, constructs a numerical model that can reflect the concentration distribution, and then presents a more accurate health risk assessment method using it. At this time, the pollutants are toluene, which is a typical material released from building materials. Method: CRPS index was applied to existing numerical model to reflect concentration distribution. This was used to calculate concentrations at adult breathing area and to use them for exposure assessment in a health risk assessment. After that, we entered adult data and conducted a health risk assessment of toluene. Results: The non-carcinogenic risk of toluene was calculated to be 0.0060. This is 5% smaller than the existing numerical model, meaning that it is more accurate to predict the pollutant risks. This value is also lower than the US EPA reference value of 1. Therefore, under the conditions of this study, long-term exposure of adults to toluene has no impact on health.

Characteristics of odorous VOCs removal by using electrolytic oxidant (전해 산화제에 의한 악취 원인 VOCs 제거 특성)

  • Lee, Tae Ho;Ryu, Hee Wook
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.381-388
    • /
    • 2018
  • In this study, various conditions and phenomena that occur in the process of removing odorous VOCs by using electrolyzed oxidant were examined. The formation of hypochlorous acid, which is an oxidant produced by electrolysis, was investigated and the properties of the oxidizing agent used to decompose toluene, xylene, and cyclohexane were investigated. As a result, it was found that the production rate and the final concentration of the oxidizing agent increased with the current density. It was found that the degree of removal varies depending on the property of each pollutant. Interestingly, in the batch experiments in which the pH of the produced oxidant was controlled, it was found that the degree of elimination varied depending on the pH of the substance. These results suggest that the difference in the concentration and distribution of hypochlorous acid (HOCl) and hypochlorite ($OCl^-$) due to the pH change leads to the difference in oxidizing power on the oxidation characteristics of each substance. Styrene and terpineol showed better degradation characteristics than toluene and xylene in odorous VOC removal experiments by spraying electrolytic oxidant using a lab-scale continuous reactor. In conclusion, the removal of odorous VOCs by the electrolytic oxidant can have various applications in that it can oxidize pollutants of various spectra.

Indoor Exposure and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Public Facilities, Korea

  • Kim, Ho-Hyun;Lim, Young-Wook;Jeon, Jun-Min;Kim, Tae-Hun;Lee, Geon-Woo;Lee, Woo-Seok;Lim, Jung-Yun;Shin, Dong-Chun;Yang, Ji-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.72-84
    • /
    • 2013
  • In the study, pollution levels of indoor polycyclic aromatic hydrocarbons (PAHs) in public facilities (vapor phase or particulate phase) were evaluated, and a health risk assessment (HRA) was carried out based on exposure scenarios. Public facilities in Korea covered by the law, including underground subway stations, funeral halls, child care facilities, internet cafes (PC-rooms), and exhibition facilities (6 locations for each type of facility, for a total of 48 locations), were investigated for indoor assessment. For the HRA, individual excess cancer risk (ECR) was estimated by applying main toxic equivalency factor (TEF) values suggested in previous studies. Among the eight public facilities, internet cafes showed the highest average $PM_{2.5}$ concentration at $110.0{\mu}g/m^3$ (range: $83.5-138.5{\mu}g/m^3$). When assuming a risk of facility exposure time based upon the results of the surveys for each public facility, the excess cancer risk using the benzo(a)pyrene indicator assessment method was estimated to be $10^{-7}-10^{-6}$ levels for each facility. Based on the risk associated with various TEF values, the excess cancer risk based upon the seven types cancer EPA (1993) and Malcolm & Dobson's (1994) assessment method was estimated to be $10^{-7}-10^{-5}$ for each facility. The excess cancer risk estimated from the TEF EPA (2010) assessment was the highest: $10^{-7}-10^{-4}$ for each facility. This is due to the 10-fold difference between the TEF of dibenzo(a,e)fluoranthene in 2010 and in 1994. The internet cafes where smoking was the clear pollutant showed the highest risk level of $10^{-4}$, which exceeded the World Health Organization's recommended risk of $1{\times}10^{-6}$. All facilities, with the exception of internet cafes, showed a $10^{-6}$ risk level. However, when the TEFs values of the US EPA (2010) were applied, the risk of most facilities in this study exceeded $1{\times}10^{-6}$.

A Study on the Air Quality of Indoor Screen Golf in Seoul (수도권 일부지역의 실내 스크린골프장의 공기질 평가)

  • Jo, Ho-Dong;Roh, Jae-Hoon;Kim, Chi-Nyon;Sim, Sang-Hyo;Won, Jong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.192-202
    • /
    • 2010
  • This study aimed to suggest the severity of indoor air pollutants in screen gold arenas which were not sufficiently investigated in Korea up to now and to help users to enjoy golf in more pleasant indoor environment. The indoor environment survey was conducted with 21 screen gold arenas in Seoul from Oct. 28, 2008 to March 13, 2009. Indoor air quality was measured and analyzed in accordance with the Air Pollution Process Test Method specified bu NIOSH(2005). The screen golf arenas are mostly in the underground floors in this study, 4 on the ground floors(19.0%) and 17 in the underground floors(81.0%). In the air in screen golf arenas, the geometric mean of benzene, toluene, ethylbenzene and xylene were 2.92 ${\mu}g/m^3$, 70.34 ${\mu}g/m^3$, 14.00${\mu}g/m^3$ and 31.43 ${\mu}g/m^3$, respectively, which exceeded the exposure limites. Each arena exceeded the exposure limit for one pollutant each. However, styrene didn't exceed the limit as 8.09 ${\mu}g/m^3$. Furthermore, the geometric mean of formaldehyde was 63.11${\mu}g/m^3$ and 7 arenas exceeded the limit. The geometric mean of volatile organic compounds(VOCs) was 428.41${\mu}g/m^3$ and 10 arenas exceeded the limit. For the density distribution of pollutants by location, benzene, toluene, ethylbenzene, xylene, styrene and formaldehyde showed higher density distribution in underground spaces, for which the statistically significant difference was not found. However, PM10 showed the statistically significant difference (p<0.05). In accordance with the analysis on the correlation between the density of pollutants in the screen golf arenas, Pearson correlation coefficient between ethylbenzene and styrene was 0.980, very significant correlation(p<0.01). The correlation coefficients between the density of toluene, ethylbenzene, xylene and styrene and that of VOCs were 0.543, 0.434, 0.451 and 0.459, respectively, which demonstrated the statistically significant difference (p<0.05).

Assessment of Exposure to and Risk of Formaldehyde and Particulate Matter (PM10 and PM2.5) by Time Activity Applying Real-Time Indoor and Outdoor Monitoring (실내·외 실시간 모니터링을 활용한 폼알데하이드 및 미세먼지(PM10, PM2.5)의 거주시간별 노출 및 위해도 평가)

  • Yoon, Danki;Namgoung, Sunju;Kong, Hyekwan;Hong, Hyungjin;Lim, Huibeen;Park, Sihyun;Lee, Hyewon;Lee, Jungsub;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.646-657
    • /
    • 2019
  • Objectives: The purpose of this study was to suggest methods to investigate continuous monitoring of concentration levels and assess the exposure of individuals considering the actual time activity of residents for formaldehyde and particulate matter (PM10, PM2.5) in the indoor and outdoor air of a house, assess the health risks of children and adults based on the results of the exposure assessment, and provide basic data on studies for assessing exposure and health risks in Korea in the future. Methods: The concentration levels of formaldehyde and particulate matter were measured in a family home in Gyeonggi-do Province from April 25 to July 31, 2019, using electrochemical sensors (formaldehyde) and light scattering sensors (PM10, PM2.5). Risk assessment by the duration of exposure by time activity was performed by dividing between weekdays and weekends, and indoors and outdoors. Results: The greatest level of carcinogenic risk from inhaling formaldehyde was indoors during the weekdays for both children and adults. For children, the risk was at 7.5 per approximately 10,000 people, and for adults, the risk was at 4.1 per approximately 10,000 people. PM10 and PM2.5 also showed the greatest values indoors during the weekdays, with children at 1.7 people and 1.4 per approximately 100 people, respectively, and adults at 8.2 per approximately 1,000 and 1.8 per approximately 100 people, respectively. Conclusions: The risks of formaldehyde, PM10 and PM2.5 were shown to be high indoors. Therefore, consideration of exposure assesment for each indoor pollutant and management of indoor air quality is necessary.