• Title/Summary/Keyword: Indoor Plant

Search Result 252, Processing Time 0.025 seconds

Unrecorded fungi isolated from indoor air of cultivation houses used for field test of a newly bred domestic shiitake cultivar (표고 현장적응 시험 버섯 재배사내 공기에서 검출한 국내 미기록 진균 보고)

  • Ahn, Geum Ran;Ahn, Hong Seok;Kwon, Hyuk Woo;Ko, Han Gyu;Kim, Seong Hwan
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.168-173
    • /
    • 2016
  • Four fungal species, during indoor air monitoring for fungi that possibly affect the field testing of a newly bred shiitake cultivar in cultivation houses located in Cheongyang, Chungnam Province and Jangheung, Jeonnam Province. Of these species, two are known to be plant pathogens and the other two are saprobes but potent contaminators in the mushroom cultivation environment. This study reports the morphological characteristics and phylogenetic relationships of these four species based on nucleotide sequences of the internal transcribed spacer (ITS) and 18S rDNA region, including their known information.

Development of the Turnip Aphid, Lipaphis erysimi Kaltenbach (Homoptera: Aphididae), and Test of Insecticidal Efficacy of Some Commercial Natural Products

  • Kim, Dong-Young;Chang, Sung-Kwon;Jeong, Hyung-Uk;Kim, Min-Jee;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.2
    • /
    • pp.93-99
    • /
    • 2008
  • The turnip aphid is a worldwide pest, damaging mainly to crucifers. In order to understand the life parameters of Lipaphis erysimi for the eventual goal of control, the developmental periods, survival rates, lifespan, and fecundity of the species were investigated under five temperature regimes ($15^{\circ}C-35^{\circ}C$). Furthermore, the efficacy of several environment-friendly agricultural materials (EFAMs) that are on the market was subjected to test in order to obtain further accurate information. The developmental period of the turnip aphid nymph was longest at $15^{\circ}C$ as 16.9 days, shortened as temperature goes up to $25^{\circ}C$ (5.4 days), and then somewhat increased at $30^{\circ}C$ (5.9 days), suggesting that the most efficient temperature for nymphal development could be around $25^{\circ}C$. Mortality of the nymphal turnip aphid was obvious at $35^{\circ}C$, whereas it was minimal at other temperature schemes. The longevity of adults shortened as temperature goes up to $30^{\circ}C$. In particular, the maximum lifespan for adults continued for 55 days at $15^{\circ}C$, but shortened to 21 days at $30^{\circ}C$. The total fecundity was 35.7 at $15^{\circ}C$, 81 at $20^{\circ}C$, 64.2 at $25^{\circ}C$, and 6.6 individuals at $30^{\circ}C$, showing the highest fecundity at $20^{\circ}C$. After the turnip aphids were successfully stabilized in indoor environment the insecticidal activity was tested and mortality was determined 12, 24, 36, and 48 hrs after EFAMs are treated. Several on-the-market EFAMs showed more than 90% of insecticidal activity within 24 hrs or 48 hrs, but a few showed less than 90% activity, signifying importance of selection of proper EFAMs.

Reproduce results on seed priming effect of indoor experiments in the field

  • Nakao, Yoshihiro;Tsujimoto, Yasuhiro;Katsura, Keisuke;Sone, Chiharu;Sakagami, Jun-Ichi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.334-334
    • /
    • 2017
  • Unstable soil moisture conditions often negatively affect the emergence, seedling establishment, and growth uniformity at the initial stage, and then reduce the grain yield and biomass in direct seeding cultivation for rice in rainfed fields. Therefore it is important to develop a technique to increase the rapid and stabilized seedling establishment and improve the uniformity of initial growth after sowing. This study aims to confirm results on seed priming effect of indoor using petri dish experiments can be reproduced in the field using container at Ghana. Twenty-seven rice varieties including of Oryza sativa L. and O. glaberrima Steud. were used in this study. The experiments using petri dish and container with different soil moisture conditions (5%, 10%, 15%, 20%) were compared. As a result, a significant positive correlation was found between the germination time uniformity in the primed seed of petri dish and emergence time uniformity in the primed seed of container in 10% and 15% soil moisture condition. A significant positive correlation was found between the germination time uniformity in the primed seed of petri dish and plant height in the primed seed of container in 10% soil moisture condition in O. glaberrima. This study concluded that the priming effect in petri dish demonstrate those in container in the field condition of Ghana in 10% and 15% soil moisture condition during seedling stage.

  • PDF

Reproduce results on seed priming effect of indoor experiments in the field

  • Nakao, Yoshihiro;Tsujimoto, Yasuhiro;Katsura, Keisuke;Sone, Chiharu;Sakagami, Jun-Ichi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.53-53
    • /
    • 2017
  • Unstable soil moisture conditions often negatively affect the emergence, seedling establishment, and growth uniformity at the initial stage, and then reduce the grain yield and biomass in direct seeding cultivation for rice in rainfed fields. Therefore it is important to develop a technique to increase the rapid and stabilized seedling establishment and improve the uniformity of initial growth after sowing. This study aims to confirm results on seed priming effect of indoor using petri dish experiments can be reproduced in the field using container at Ghana. Twenty-seven rice varieties including of Oryza sativa L. and O. glaberrima Steud. were used in this study. The experiments using petri dish and container with different soil moisture conditions (5%, 10%, 15%, 20%) were compared. As a result, a significant positive correlation was found between the germination time uniformity in the primed seed of petri dish and emergence time uniformity in the primed seed of container in 10% and 15% soil moisture condition. A significant positive correlation was found between the germination time uniformity in the primed seed of petri dish and plant height in the primed seed of container in 10% soil moisture condition in O. glaberrima. This study concluded that the priming effect in petri dish demonstrate those in container in the field condition of Ghana in 10% and 15% soil moisture condition during seedling stage.

  • PDF

A Study on Particulate Matter Reduction Effects of Vegetation Bio-Filters by Airflow Volume (공조풍량별 식생바이오필터의 입자상 오염물질 저감효과 연구)

  • Choi, Boo Hun;Kim, Tae Han
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.89-95
    • /
    • 2021
  • As the influence of fine dust on society spreads gradually, the public's interest in indoor air is increasingly rising. Air-purifying plants are drawing keen attention due to their natural purifying function enabled by plant physiology. However, as their fine dust reduction mechanism is limited to adsorption only, vegetation bio-filters that optimize purification effects through integration with air-conditioning systems is rising as an alternative. In accordance with the relevant standard test methods, this study looked into the fine dust reduction assessment method by air-conditioning airflow volume that can be used for the industrial spread of vegetation bio-filters. In the case of PM10 at 300 ㎍/m3, it was in the order of EG-B(3,500CMH, 29 min.) < EG-A (2,500CMH, 37 min.) < CG(0CMH, 64 min.) for reaching the maintenance level (100 ㎍/m3) of publicly used facilities. For reaching the WHO Guideline(50 ㎍/m3) requirement, it was in the order of EG-B (51 min.) < EG-A (160 min.) < CG (170 min.). In the case of PM2.5, it was in the order of EG-B (26 min.) < EG-A (33 min.) < CG (57 min.) for reaching the maintenance level (50 ㎍/m3) of publicly used facilities. It was in the order of EG-B (48 min) < EG-A (140 min) < CG (158 min) for reaching the WHO Guideline (25 ㎍/m3) requirement. The findings from the analysis showed that fine dust can be reduced most efficiently when the system is operated at 3,500CMH level. The limitation of this study is that due to the absence of a way of assessing the stress of plants in vegetation bio-filters, generating optimal air-conditioning air flow of the relevant system and economics analysis against the existing facility-type air purification system have been clarified, which should be explored further though follow-up studies.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Analysis on the EMC evaluating method for applying wireless communications in NPP (원전 내 무선통신 적용에 대한 전자파 적합성 평가방법 분석)

  • Kang, SeungSeok;Lim, Tae Heung;Choo, Jaeyul;Kim, HyungTae;Kim, DaeHee;Byun, Gangil;Park, Jong Eon;Lee, Jun-Yong;Choo, Hosung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2221-2231
    • /
    • 2017
  • In this paper, we surveyed previous cases, network protocols (such as Wi-Fi, Zigbee, Z-wave, and WirelessHart) and propagation characteristics on the application of maintaining equipments for instrumentation and control (I&C) using wireless communication techniques inside the nuclear power plant (NPP). In addition, we compared and analyzed the difference of detailed regulations with respect to the electromagnetic interference (EMI) and radio frequency interference (RFI) in the Regulatory Guide 1.180 rev. 1 (RG. 1.180) for adopting the wireless communication techniques inside the NPP, and other regulations, such as MIL-STD 461E and IEC 61000-4, that are recognized in the KINS/RG-N03.09 (Rev. 2). Furthermore, we investigated evaluating factors about electromagnetic properties by considering indoor environments, wave scattering, shielding effectiveness, and the indoor wave attenuation model that were not included in the current electromagnetic compatibility regulation.

Welding Fume and Metals Exposure Assessment among Construction Welders (건설현장 용접직종별 용접흄 및 금속류 노출 실태)

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.147-158
    • /
    • 2016
  • Objectives: The objective of this study was to evaluate the assessment of exposure to welding fume and heavy metals among construction welders. Methods: Activity-specific personal air samplings(n=206) were carried out at construction sites of three apartment, two office buildings, and two plant buildings using PVC(poly vinyl chloride) filters with personal air samplers. The concentration of fumes and heavy metals were evaluated for five different types of construction welding jobs: general building pipefitter, chemical plant pipefitter, boiler maker, ironworker, metal finishing welder. Results: The concentration of welding fumes was highest among general building pipefitters($4.753mg/m^3$) followed by ironworkers($3.765mg/m^3$), boilermakers($1.384mg/m^3$), metal finishing welders($0.783mg/m^3$), chemical pipefitters($0.710mg/m^3$). Among the different types of welding methods, the concentration of welding fumes was highest with the $CO_2$ welding method($2.08mg/m^3$) followed by SMAW(shield metal arc welding, $1.54mg/m^3$) and TIG(tungsten inert gas, $0.70mg/m^3$). Among the different types of workplace, the concentration of welding fumes was highest in underground workplaces($1.97mg/m^3$) followed by outdoor($0.93mg/m^3$) and indoor(wall opening as $0.87mg/m^3$). Specifically comparing the workplaces of general building welders, the concentration of welding fumes was highest in underground workplaces($7.75mg/m^3$) followed by indoor(wall opening as $2.15mg/m^3$). Conclusions: It was found that construction welders experience a risk of expose to welding hazards at a level exceeding the exposure limits. In particular, for high-risk welding jobs such as general building pipefitters and ironworkers, underground welding work and $CO_2$ welding operations require special occupational health management regarding the use of air supply and exhaust equipment and special safety and health education and fume mask are necessary. In addition, there is a need to establish construction work monitoring systems, health planning and management practices.