• Title/Summary/Keyword: Indoor Modeling

Search Result 193, Processing Time 0.032 seconds

Direct Depth and Color-based Environment Modeling and Mobile Robot Navigation (스테레오 비전 센서의 깊이 및 색상 정보를 이용한 환경 모델링 기반의 이동로봇 주행기술)

  • Park, Soon-Yong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.194-202
    • /
    • 2008
  • This paper describes a new method for indoor environment mapping and localization with stereo camera. For environmental modeling, we directly use the depth and color information in image pixels as visual features. Furthermore, only the depth and color information at horizontal centerline in image is used, where optical axis passes through. The usefulness of this method is that we can easily build a measure between modeling and sensing data only on the horizontal centerline. That is because vertical working volume between model and sensing data can be changed according to robot motion. Therefore, we can build a map about indoor environment as compact and efficient representation. Also, based on such nodes and sensing data, we suggest a method for estimating mobile robot positioning with random sampling stochastic algorithm. With basic real experiments, we show that the proposed method can be an effective visual navigation algorithm.

  • PDF

The 3D Shape Reconstruction System Based on Active Stereo Matching (Active Stereo Matching 기반의 3차원 형상 재구성 시스템)

  • Byun, Ki-Won;Im, Jae-Uk;Kim, Dae-Dong;Nam, Ki-Gon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1003-1004
    • /
    • 2008
  • In this paper, we propose a 3D modeling method using Laser Slit Beam and Stereo Camera. We can get depth information of image by analyzing projected Laser Slit Beam on object. 3D modeling is demanded exquisite merge of 3D data. In our approach, we can get the depth image where the reliability is high. Each reconstructed 3D modeling is combined by the sink information which is acquired by SIFT (Scale Invariant Feature Transform) Algorithm. We perform experiments using indoor images. The results show that the proposed method works well in indoor environments

  • PDF

Real Time 3D Indoor Tracking System with 3D Model on Mobile Device (모바일 환경에서의 입체모델을 적용한 실시간, 고속 3D 실내 추적시스템)

  • Chung, Wan-Young;Lee, Boon-Giin;Do, Kyeong-Hoon;Kim, Jong-Jin;Kwon, Tae-Ha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.348-353
    • /
    • 2008
  • Despite the increasing popularity of wireless sensor network, indoor positioning using low power IEEE 802.15.4 compliant radio had attracted an interest of many researchers in the last decade. Old fashionable indoor location sensing information has been presented in dull and unpleasant 2D image standard. This paper focused on visualizing high precision 3 dimensional RSSI-based (received signal strength indication) spatial sensing information in an interactive virtual reality on PDA. The developed system operates by capturing and extracting signal strength information at multiple pre-defined reference nodes to provide information in the area of interest, thus updating user's location in 3D indoor virtual map. VRML (Virtual Reality Modeling Language) which specifically developed for 3D objects modeling is utilized to design 3D indoor environment.

  • PDF

Indoor 3D Modeling Approach based on Terrestrial LiDAR (지상라이다기반 실내 3차원 모델 구축 방안)

  • Hong, Sungchul;Park, Il-Suk;Heo, Joon;Choi, Hyunsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.527-532
    • /
    • 2012
  • Terrestrial LiDAR emerges as a main mapping technology for indoor 3D cadastre, cultural heritage conservation and, building management in that it provides fast, accurate, and reliable 3D data. In this paper, a new 3D modeling method consisting of segmentation stage and outline extraction stage is proposed to develop indoor 3D model from the terrestrial LiDAR. In the segmentation process, RANSAC and a refinement grid is used to identify points that belong to identical planar planes. In the outline tracing process, a tracing grid and a data conversion method are used to extract outlines of indoor 3D models. However, despite of an improvement of productivity, the proposed approach requires an optimization process to adjust parameters such as a threshold of the RANSAC and sizes of the refinement and outline extraction grids. Furthermore, it is required to model curvilinear and rounded shape of the indoor structures.

The Indoor Propagation Modeling for Indoor Wireless LAN Service (실내 무선 랜 서비스를 위한 실내 전파 모델링)

  • 김진웅;김기홍;윤영중;석재호;임재우;신용섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.426-435
    • /
    • 2002
  • In this paper we present an indoor propagation model for indoor wireless LAN service in the ISM band. We primarily use a 3D ray tracing as well as a patch scattering model in order to take into account the indoor fixtures. Therefore input parameters such as indoor environment parameters and antenna's types, polarizations are considered. As the results, we present fading characteristics and rms delay spread from time delay spread. In order to investigate the accuracy of the presented model, comparisons of predictions with measurement and simulations are performed in indoor wireless LAN service environments. The results show that measurements and simulations are very similar. Therefore in this paper, the effect of presented indoor propagation model is confirmed.

Automated Construction of IndoorGML Data Using Point Cloud (포인트 클라우드를 이용한 IndoorGML 데이터의 자동적 구축)

  • Kim, Sung-Hwan;Li, Ki-Joune
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.611-622
    • /
    • 2020
  • As the advancement of technologies on indoor positioning systems and measuring devices such as LiDAR (Light Detection And Ranging) and cameras, the demands on analyzing and searching indoor spaces and visualization services via virtual and augmented reality have rapidly increasing. To this end, it is necessary to model 3D objects from measured data from real-world structures. In addition, it is important to store these structured data in standardized formats to improve the applicability and interoperability. In this paper, we propose a method to construct IndoorGML data, which is an international standard for indoor modeling, from point cloud data acquired from LiDAR sensors. After examining considerations that should be addressed in IndoorGML data, we present a construction method, which consists of free space extraction and connectivity detection processes. With experimental results, we demonstrate that the proposed method can effectively reconstruct the 3D model from point cloud.

Estimation of Source Emission Rate on Volatile Organic Compounds and Formaldehyde Using Indoor Air Quality Modeling in New Apartment (실내공기질 모델을 이용한 신축공동주택의 VOCs 및 HCHO 배출량 추정)

  • Sim, Sang-Hyo;Kim, Yoon-Shin;Yang, Won-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.929-933
    • /
    • 2006
  • Indoor air quality is the dominant contributor to total personal exposure because most people spend a majority of their time Indoors. Especially when indoor environments have sources of contaminants, exposure to in-door air can potentially pose a greater threat than exposure to ambient air. In this study, estimations of volatile organic compounds and formaldehyde omission rate in indoor environments of new apartments were carried out using mass balance model in indoor environment, because indoor air quality can be affected by source generation, outdoor air level, ventilation, decay by reaction, temperature, humidity, mixing condition and so on. Considering the estimated emission rate of volatile organic compounds and formaldehyde, it Is suggested that new apartment should be designed and constructed in the aspect of using construction materials to emit low hazardous air pollutants.

Modeling of the Air-side Particulate Fouling in Finned-Tube Heat Exchangers of Air Conditioners using Accelerated Particle-Loading System (파울링 가속장치를 이용한 공기조화기용 열교환기의 공기측 파울링 특성에 대한 예측 모델링)

  • Ahn Young-Chull;Lee Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.262-267
    • /
    • 2005
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate and to model the air-side particulate fouling characteristics of the heat exchangers using accelerated particle loading system. The main variables of the modeling equation are face velocity and dust concentration. The modeling equation shows good agreements with the experimental results at the face velocity of 0.5, 1.0, 1.5 m/s and the dust concentration of 1.28 and $3.84\;g/m^3$. It will be very useful to predict fouling characteristics such as variations of pressure drop and heat transfer capacity in finned-tube heat exchangers of air conditioners.

Prediction of the Air-side Particulate Fouling in Finned-Tube Heat Exchangers of Air Conditioners used in the Field (실공간 사용 공기조화가용 열교환기의 공기측 파울링 특성 예측)

  • Hwang, Yu-Jin;Kim, Gil-Tae;Jeong, Seong-Il;Lee, Jae-Geun;Ahn, Young-Chull
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.306-310
    • /
    • 2005
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. An empirical modeling equation is derived from the experimental results using accelerated tests and it shows good predictions of the fouling characteristics of the slitted finned tube heat exchangers. However the modeling equation predicts only the fouling characteristics of new heat exchangers and it can not predicts fouling characteristics obtained from actual field data. The purpose of this study is to modify the previous modeling equation using the actual field data Therefore an modified modeling equation is proposed and it shows good predictions of the actual fouling characteristics of finned-tube heat exchangers.

  • PDF

Evaluation of the Indoor Thermal Comfort in Consideration of the Solar Radiation (태양 일사를 고려한 실내 열쾌적성 평가 연구)

  • Kim Se-Hyun;Noh Kwang-Chul;Oh Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1140-1148
    • /
    • 2004
  • Recently the Predicted Mean Vote (PMV) has been used as an important index to evaluate the degree of the indoor thermal comfort in modern residential buildings. It is known that the PMV is mainly affected by four major factors, which are the air temperature, the air velocity, the humidity and the mean radiant temperature (MRT). Through the numerical calculation of the temperature and the modeling of the mean radiant temperature considering the solar radiation, we proposed the new modeling strategies of the mean radiant temperature and investigated the PMV index and evaluated the MRT. Also, we compared the numerical results with the experimental values. As the results, we found out that the MRT is affected by the wall temperature and the solar radiation. We also knew that the new modeling strategies of the mean radiant temperature is a more correct way of PMV calculation. Especially, the new modeling is necessary for the spaces like an atrium and large rooms with windows mainly influenced by solar radiation.