• 제목/요약/키워드: Indocyanine green fluorescence angiography

검색결과 4건 처리시간 0.02초

Endoscopic Fluorescence Angiography with Indocyanine Green : A Preclinical Study in the Swine

  • Cho, Won-Sang;Kim, Jeong Eun;Kim, Sae Hoon;Kim, Hee Chan;Kang, Uk;Lee, Dae-Sic
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권6호
    • /
    • pp.513-517
    • /
    • 2015
  • Objective : Microscopic indocyanine green (ICG) angiography is useful for identifying the completeness of aneurysm clipping and the preservation of parent arteries and small perforators. Neuroendoscopy is helpful for visualizing structures beyond the straight line of the microscopic view. We evaluated our prototype of endoscopic ICG fluorescence angiography in swine, which we developed in order to combine the merits of microscopic ICG angiography and endoscopy. Methods : Our endoscopic ICG system consists of a camera, a light source, a display and software. This system can simultaneously display real-time visible and near infrared fluorescence imaging on the same monitor. A commercially available endoscope was used, which was 4 mm in diameter and had an angle of $30^{\circ}$. A male crossbred swine was used. Results : Under general anesthesia, a small craniotomy was performed and the brain surface of the swine was exposed. ICG was injected via the ear vein with a bolus dose of 0.3 mg/kg. Visible and ICG fluorescence images of cortical vessels were simultaneously observed on the display monitor at high resolution. The real-time merging of the visible and fluorescent images corresponded well. Conclusion : Simultaneous visible color and ICG fluorescent imaging of the cortical vessels in the swine brain was satisfactory. Technical improvement and clinical implication are expected.

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon;Young-Je Son;Sung Bae Park;Pyoung-Seop Shim;Joo-Hiuk Son;Hee-Jin Yang
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.382-392
    • /
    • 2023
  • Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.

Keyhole Approach and Neuroendoscopy for Cerebral Aneurysms

  • Cho, Won-Sang;Kim, Jeong Eun;Kang, Hyun-Seung;Son, Young-Je;Bang, Jae Seung;Oh, Chang Wan
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권3호
    • /
    • pp.275-281
    • /
    • 2017
  • Treating diseases in the field of neurosurgery has progressed concomitantly with technical advances. Here, as a surgical armamentarium for the treatment of cerebral aneurysms, the history and present status of the keyhole approach and the use of neuroendoscopy are reviewed, including our clinical data. The major significance of keyhole approach is to expose an essential space toward a target, and to minimize brain exposure and retraction. Among several kinds of keyhole approaches, representative keyhole approaches for anterior circulation aneurysms include superciliary and lateral supraorbital, frontolateral, mini-pterional and mini-interhemispheric approaches. Because only a fixed and limited approach angle toward a target is permitted via the keyhole, however, specialized surgical devices and preoperative planning are very important. Neuroendoscopy has helped to widen the indications of keyhole approaches because it can supply illumination and visualization of structures beyond the straight line of microscopic view. In addition, endoscopic indocyanine green fluorescence angiography is useful to detect and correct any compromise of the perforators and parent arteries, and incomplete clipping. The authors think that keyhole approach and neuroendoscopy are just an intermediate step and robotic neurosurgery would be realized in the near future.

Two Cases of Robot-Assisted Totally Minimally Invasive Esophagectomy with Colon Interposition for Gastroesophageal Junction Cancer: Surgical Considerations

  • Kinam Shin;In Ha Kim;Yun-Ho Jeon;Chung Sik Gong;Chan Wook Kim;Yong-Hee Kim
    • Journal of Chest Surgery
    • /
    • 제57권3호
    • /
    • pp.323-327
    • /
    • 2024
  • This case report presents 2 patients with gastroesophageal junction cancer who both underwent totally minimally invasive esophagectomy with colon interposition. Patients 1 and 2, who were 43-year-old and 78-year-old men, respectively, had distinct clinical presentations and medical histories. Patient 1 underwent minimally invasive robotic esophagectomy with a laparoscopic total gastrectomy, colonic conduit preparation, and intrathoracic esophago-colono-jejunostomy. Patient 2 underwent completely robotic total gastrectomy, colon conduit preparation, and intrathoracic esophago-colono-jejunostomy. The primary challenge in colon interposition is assessing colon vascularity and ensuring an adequate conduit length, which is critical for successful anastomosis. In both cases, we used indocyanine green fluorescence angiography to evaluate vascularity. Determining the appropriate conduit is challenging; therefore, it is crucial to ensure a slightly longer conduit during reconstruction. Because totally minimally invasive colon interposition can reduce postoperative pain and enhance recovery, this surgical technique is feasible and beneficial.