• Title/Summary/Keyword: Individual flow control

Search Result 127, Processing Time 0.026 seconds

A Flow Quantity Distribution Characteristics of the Hot Water Header for Individual Room Control System (실별제어 온수분배기의 유량분배 특성)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-180
    • /
    • 2008
  • Flow quantity to supply to a coil in floor heating system is important to achieve comfortable indoor air condition in the winter season. The hot water header is used to distribute the water into the coil. Experimental study has been performed using the water header that have 5 branches consisted of flow control valves and automatic shut-off valves. Each branch line connected it with X-L pipe. Experimental tests accomplished it to investigate the flow distribution characteristics of the hot water header. Experimental results show that the selection of the pump head and differential pressure are very important to save running energy of the system, and high differential pressure needs more friction loss in the case of suitable differential pressure for balancing of the header.

An Evaluation on the Thermal Performance of the Room Control System for Radiant Floor Heating (바닥복사난방의 실별제어시스템에 관한 열성능 평가)

  • 석호태;김오봉;조영흠;김광우;여명석
    • Journal of the Korean housing association
    • /
    • v.14 no.5
    • /
    • pp.75-82
    • /
    • 2003
  • In this study, the thermal performance of the room control system is analyzed in terms of control performance, potential for coil expansion and energy consumption through experiments comparing the individual room control system and an existing system. The results of this study show that the existing system is not able to supply design water flow rate and does not accurately maintain the set point temperature in each room. However, the individual room control system can set a room air temperature for each room, for it is able to supply design water flow and accurately control the set point temperature in each room and can reduce the energy consumption compared to the existing system. Moreover, the individual room control system can reduce the number of coil division zone and facilitates the construction process, because it can extend the length of the coil division.

A Study on the Individual Room Control of Radiant Floor Heating System in Apartment Buildings (공동주택에서 바닥복사 난방시스템의 실별 제어에 관한 연구)

  • 김오봉;이미경;김광우;여명석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.421-429
    • /
    • 2004
  • In Korea, the radiant heating system has been widely used as a residential heating method, which has been modernized to use hot water running into the tubes embedded in the floor structure. According to the recent improvement of living standard of residential buildings, the requirement of the thermal comfort and energy saving in heating system has been raised. Until now, the radiant floor heating system has been controlled by room thermostat installed in the living room, but for better thermal comfort, an individual room control method is adopted as an alternative. Therefore, it is necessary to evaluate the control performance between the current control method and the individual room control method. In this study, the control performance between the two systems is evaluated through the field experiment. And the control performances of room air temperature and energy performances are analyzed through the simulation using TRNSYS. Firstly, the simulations are performed in the various outdoor conditions and the flow rates and the simulation results are analyzed for the control performances. Also, to evaluate the energy performance, the simulations are performed under the operating conditions in which the set-point of the room air temperature is fixed or changed according to the schedule of occupancy, and the simulation results are analyzed between the two methods.

Feasibility Study on Installation of Individual Room Control Ventilation in Apartment House (공동주택의 실별 제어환기 도입 타당성 분석)

  • Kim, Jung-Yup;Shin, Hyun-Joon;Kwon, Yong-Il;Yun, Young-Woo;Cho, Chun-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.502-507
    • /
    • 2009
  • Trend of mechanical ventilation system applied to apartment house is introduced and feasibility study on installation of the individual room control ventilation as energy-saving method is carried out through field experiment. While initial cost of installation for the individual room control ventilation increases, the running cost is lower than the individual household control ventilation due to automatic flow rate control and reduction of fan power, and the management cost also decreases due to extension of use life of components. As the results of field experiment on $115m^2$-type apartment house, the individual room control ventilation could save the amount of 1,459.5Wh/day when compared with the individual room control ventilation

  • PDF

Development of Flow Control Valves for Hot Water Distribution Manifolds (온수분배기용 유량제어밸브의 개발)

  • Kwon, Woo-Chul;Yoon, Joon-Yong;Yoo, Sun-Hak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2010
  • The developed control valves, installed on the hot water distribution manifolds for the floor heating system, consist of the balancing valves and the shut-off valves. The balancing valve was designed to improve the flow control performance and to reduce the noise emitted from the valve by modification of the general V port. The port of the shut-off valve was designed with two ceramic plates, working by rotating upper plate, to improve the duration and to reduce the noise. For the evaluation of the new valves, the flow rate was measured and noise level test was carried out. The test results showed that the error of the flow rate accuracy test for the flow balance of each manifold circuit was less than ${\pm}3%$ and the noise level was less than 35 dB(A).

A Ternary Microfluidic Multiplexer using Control Lines with Digital Valves of Different Threshold Pressures (서로 다른 임계압력을 가지는 디지털 밸브가 설치된 제어라인을 이용한 3 진 유체분배기)

  • Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.568-572
    • /
    • 2009
  • We present a ternary microfluidic multiplexer unit, capable to address three flow channels using a pair of control lines with two different threshold pressure valves. The previous binary multiplexer unit addresses only two flow channels using a pair of control line with identical threshold pressure valves, thus addressing $2^{n/2}$ flow channels using n control lines. The present ternary multiplexer addressing three flow channels using a pair of control lines, however, is capable to address $3^{n/2}$ flow channels using n control lines with two different threshold pressure valves. In the experimental study, we characterized the threshold pressure and the response time of the valves used in the ternary multiplexer. From the experimental observation, we also verified that the present ternary multiplexer unit could be operated by two equivalent valve operating conditions: the different static pressures and dynamic pressures at different duty ratio. And then, $3{\times}3$ well array stacking ternary multiplexers in serial is addressed in cross and plus patterns, thus demonstrating the individual flow channel addressing capability of the ternary multiplexer. Thus, the present ternary multiplexer reduces the number of control lines for addressing flow channels, achieving the high well control efficiency required for simple and compact microfluidic systems.

Numerical Study About Flow Control Using Blending Gurney Flap with Jet Flap (Gurney플랩과 제트 플랩을 혼용한 유동제어 기법에 관한 수치적 연구)

  • Choi, Sung-Yoon;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.565-574
    • /
    • 2007
  • The flow control effect of blending Gurney flap with jet flap for flow around an NACA 0012 airfoil was numerically investigated through parameter variation of each flow control mechanism on unstructured meshes. The aerodynamic force and moment variations due to flow control were examined, and the results were compared between the blending control and each individual flow control. The results showed that the blending control required less energy input to achieve the same level of lift increment than that of the jet flap, and at the same time alleviated drag increment caused by introducing the Gurney flap.

A novel method for cell counting of Microcystis colonies in water resources using a digital imaging flow cytometer and microscope

  • Park, Jungsu;Kim, Yongje;Kim, Minjae;Lee, Woo Hyoung
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.397-403
    • /
    • 2019
  • Microcystis sp. is one of the most common harmful cyanobacteria that release toxic substances. Counting algal cells is often used for effective control of harmful algal blooms. However, Microcystis sp. is commonly observed as a colony, so counting individual cells is challenging, as it requires significant time and labor. It is urgent to develop an accurate, simple, and rapid method for counting algal cells for regulatory purposes, estimating the status of blooms, and practicing proper management of water resources. The flow cytometer and microscope (FlowCAM), which is a dynamic imaging particle analyzer, can provide a promising alternative for rapid and simple cell counting. However, there is no accurate method for counting individual cells within a Microcystis colony. Furthermore, cell counting based on two-dimensional images may yield inaccurate results and underestimate the number of algal cells in a colony. In this study, a three-dimensional cell counting approach using a novel model algorithm was developed for counting individual cells in a Microcystis colony using a FlowCAM. The developed model algorithm showed satisfactory performance for Microcystis sp. cell counting in water samples collected from two rivers, and can be used for algal management in fresh water systems.

MAX-MIN Flow Control Supporting Dynamic Bandwidth Request of Sessions (세션의 동적 대역폭 요구를 지원하는 최대-최소 흐름제어)

  • Cho, Hyug-Rae;Chong, Song;Jang, Ju-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.638-651
    • /
    • 2000
  • When the bandwidth resources in a packet-switched network are shared among sessions by MAX-MIN flow control each session is required to transmit its data into the network subject to the MAX-MIN fair rate which is solely determined by network loadings. This passive behavior of sessions if fact can cause seri-ous QoS(Quality of Service) degradation particularly for real-time multimedia sessions such as video since the rate allocated by the network can mismatch with what is demanded by each session for its QoS. In order to alleviate this problem we extend the concept of MAX-MIN fair bandwidth allocations as follows: Individual bandwidth demands are guaranteed if the network can accommodate them and only the residual network band-width is shared in the MAX-MIN fair sense. On the other hand if sum of the individual bandwidth demands exceeds the network capacity the shortage of the bandwidth is shared by all the sessions by reducing each bandwidth guarantee by the MAX-MIN fair division of the shortage. we present a novel flow control algorithm to achieve this extended MAX-MIN fairness and show that this algorithm can be implemented by the existing ATM ABR service protocol with minor changes. We not only analyze the steady state asymptotic stability and convergence rate of the algorithm by appealing to control theories but also verify its practical performance through simulations in a variety of network scenarios.

  • PDF

A Study on Improved Heating Performance of an Apartment Housing Unit (공동주택 세대별 난방 성능 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Most hot water heating valves for apartments are constant-flow types, which limit the flow rate through an individual household for even distribution of heating water to other households. The constant-flow type is implemented by an on-off control. As a result, heating water is supplied intermittently and hence, indoor air temperature also fluctuates. Returning water temperature is also high, which reduces energy efficiency. To implement continuous feedback control, the indoor temperature dynamics was simulated to fit a measured temperature history by a state-of-the-art physical model. From the model, it was found that the most important disturbance is outdoor temperature and its effect on indoor temperature lasts about an hour. To cope with the slow response and the significant disturbance, a prediction control with proportional feedback is proposed. The control was found to be successful in implementing continuous heating water flow and improved indoor temperature control.