Purpose: This study was designed to construct a structural model explaining depression in university students. Methods: Data were collected from 1,640 university students by questionnaire, and analyzed using AMOS 5.0 to test the hypothetical model. Results: Fitness statistics for the modified model were GFI=.93, AGFI=.89, NFI=.91, and RMSEA=.081. All the 12 paths in the modified model proved to be statistically significant. Depression of university students accounted for 52% of the covariance by the factors. The factor that had the most influence on depression was individual vulnerability, and followed by sequence order, stress, social support, coping, and self-efficacy. Depression was influenced directly by individual vulnerability, stress, social support, and coping, and indirectly by individual vulnerability, stress, social support, and self-efficacy. Conclusion: A screening and management system for the high risk group is needed to effectively prevent depression and reduce rate of depression in university students. Detailed support programs which specifically deal with prevailing stressors should be developed to effectively reduce the harmful effects of individual vulnerability and stress. It is anticipated that the model constructed in this study could be utilized as a reference in developing various strategies to prevent and intervene depression in university students.
Journal of the Korean Data and Information Science Society
/
v.17
no.4
/
pp.1349-1364
/
2006
An analytic approach that provides explicit estimates of risk on cataract and epilation data is evaluated by reasonableness of conceivable relative risk models regarding a simple, odds, logistic or Gompertz regression method, assuming a binomial distribution. In these analyses, we apply relative risk models with two thresholds between epilators and nonepilators from a highly characteristic lesion of which radiation cataract does not occur around 2 gray for a single acute exposure. The risk models are fitted to the data assuming 10 as a constant relative biological effectiveness of neutron. The likelihood of observing the entire data set in these models fitted is evaluated by an individual binary-response array. Estimation of a threshold with or without severe epilation and the 100 ($1-\alpha$)% confidence limits are derived from the maximum likelihood approach. The relative risk model with two thresholds can be expressed as a formula with structure of Background $\times$ RR, where RR includes threshold models with or without epilation. The radiosensitivity of ionizing radiation to cataracts has been examined for the relationship between epilators and nonepilators.
Sundstrup, Emil;Hansen, Ase M.;Mortensen, Erik L.;Poulsen, Otto M.;Clausen, Thomas;Rugulies, Reiner;Moller, Anne;Andersen, Lars L.
Safety and Health at Work
/
v.11
no.3
/
pp.291-300
/
2020
Background: The study aimed to determine the association of individual cognitive ability in late midlife with labor market participation among older workers. Methods: This prospective cohort study estimates the risk of long-term sickness absence, disability pension, early retirement, and unemployment from scores on the Intelligenz-Struktur-Test 2000R by combining data from 5076 workers from the Copenhagen Aging and Midlife Biobank with a register on social transfer payments. Analyses were stepwise adjusted for age, gender, physical and psychosocial work environment, health behaviors, occupational social class, education, and chronic diseases. Results: In the fully adjusted model, low cognitive ability (≥1 standard deviation below the mean for each gender) and high cognitive ability (≥1 standard deviation above the mean for each gender) were not associated with risk of any of the four labor market outcomes. Conclusion: Individual cognitive ability in late midlife was not associated with risk of long-term sickness absence, disability pension, early retirement, and unemployment in the fully adjusted model. Thus, no direct effect of individual cognitive ability in late midlife was observed on the risk of permanently or temporarily leaving the labor market.
Background: This study was conducted to evaluate the performance of the Hierarchical Condition Category (HCC) model, identify potentially high-cost patients, and examine the effects of adding prior utilization to the risk model using Korean claims data. Methods: We incorporated 2 years of data from the National Health Insurance Services-National Sample Cohort. Five risk models were used to predict health expenditures: model 1 (age/sex groups), model 2 (the Center for Medicare and Medicaid Services-HCC with age/sex groups), model 3 (selected 54 HCCs with age/sex groups), model 4 (bed-days of care plus model 3), and model 5 (medication-days plus model 3). We evaluated model performance using $R^2$ at individual level, predictive positive value (PPV) of the top 5% of high-cost patients, and predictive ratio (PR) within subgroups. Results: The suitability of the model, including prior use, bed-days, and medication-days, was better than other models. $R^2$ values were 8%, 39%, 37%, 43%, and 57% with model 1, 2, 3, 4, and 5, respectively. After being removed the extreme values, the corresponding $R^2$ values were slightly improved in all models. PPVs were 16.4%, 25.2%, 25.1%, 33.8%, and 53.8%. Total expenditure was underpredicted for the highest expenditure group and overpredicted for the four other groups. PR had a tendency to decrease from younger group to older group in both female and male. Conclusion: The risk adjustment models are important in plan payment, reimbursement, profiling, and research. Combined prior use and diagnostic data are more powerful to predict health costs and to identify high-cost patients.
Purpose: This study was done to identify risk factors influencing high school students to runaway from home. A comprehensive analysis of individual, family and social environment-related factors was done. Method: The participants in this descriptive survey on causal relations were 974 students enrolled in high school who were selected by convenience sampling. The data collected in June and July, 2003 were put in to logistic regression analysis to build a prediction model. Results: 1) Individual-related factors for running away in high school students were experience with smoking and sexual intercourse. 2) Family-related factors for running away in high school students were economic status and physically ill-treatment of the types of ill-treatment. 3) social environment-related factors for running away in high school students were number of delinquent friends. Conclusions and Recommendations: Running away from home among Korean high school students was associated not only with individual factors, but also with family and social environmental factors. The findings of study suggest that board intervention programs should be provided to prevent running away form home by adolescent. It is also recommended that a program be developed that can help control the variables identified in this study along with follow up study to verify the model.
Abalone herpes-like virus (AbHV) is a fatal disease of abalones that impose severe economic impacts on the industry of infected regions due to high mortality. The aim of this study was to quantify the risk of introducing AbHV into Korea through the importation of live abalones for human consumption by import risk analysis (IRA). Monte Carlo simulation models were developed to provide estimates of the probability that a ton of imported abalone contains at least one AbHV-infected individual, using historical trade data and relevant literatures. A sensitivity analysis with 5,000 iterations was also conducted to determine the extent to which input parameters affect the outcome of the model. Although many uncertainties were present in the data, the results indicated that, if 5,000 tons of abalone were imported from a hypothetical exporting country with low prevalence of AbHV (model 1), there would be at least one AbHV-infected abalones in 4,816 of those tons (96.3%), while there would be at least one AbHV-infected abalones in 100% of those tons imported from country with high prevalence (model 2). Sensitivity analysis indicated that for model 1, prevalence was the strongest influence factor on the predicted number of infections. For model 2, background mortality and washing to reduce the risk of surface contamination during processing were the major contributing factors. Risk management strategies need to be enforced to reduce the risk of AbHV introduction in that at least one infected abalone would remain in a consignment from country even with a low prevalence of AbHV infection. The methodology and the results presented here will contribute to improve the development of AbHV management program, and with more accurate data this IRA model will aid science-based decision-making on mitigation strategies to reduce the risk of AbHV introduction in Korea.
Some researches insist that, to participate in an e-partnership, a distributor needs a given level of trust to reduce the perceived risk of an e-partnership to his/her own threshold. However, other researches insist that if a distributor has only a given level of trust in his/her suppliers, irrelevant of the perceived risk level, he/she participates in the e-partnership. Thus, from the perspective of a distributor, this study built a trust model in which these two viewpoints were reflected. And then this study examined whether or not perceived risk mediates an influence of trust to e-partnership. The proposed trust model was tested with 265 questionnaires about a distributor-supplier e-partnership in food wholesale markets. The analysis results Indicated that perceived risk partially had a mediating effect between trust and e-partnership Intention. That is, of the two risk types, only perceived performance risk mediated an influence from competence trust to e-partnership intention. Relational risk did not play a mediating role between goodwill trust and e-partnership intention. This result Implies two managerial meanings. First, a distributor Intends to engage In e-partnership with his/her supplier, irrelevant of relational risk's level if goodwill trust level surpasses his/her own threshold. Thus, suppliers should concentrate more effort in developing goodwill trust than in reducing relational risk. To develop goodwill trust, they should endeavor to establish mutual interests and individual trust with their distributor, and to utilize institutional trust bases. Second, a distributor requires a certain competence In his/her suppliers to sufficiently reduce performance risk caused bye-partnership. Thus, to develop competence trust in e-partnership, suppliers should improve on any lack of competence and build a good reputation.
Let ξ$_{p}$(z$_{0}$) be the pth quantile of the distribution of the survival time of an individual with time-invariant covariate vector z$_{0}$ in the additive risk model. We propose an estimator of (ξ$_{p}$(z$_{0}$) and derive its asymptotic distribution, and then construct an approximate confidence interval of ξ$_{p}$(z$_{0}$) . Simulation studies are carried out to investigate performance of the proposed estimator far practical sample sizes in terms of empirical coverage probabilities. Also, the estimator is illustrated on small cell lung cancer data taken from Ying, Jung, and Wei (1995) .d Wei (1995) .
Communications for Statistical Applications and Methods
/
v.29
no.6
/
pp.679-694
/
2022
Mortality risk is a significant threat to individual life, and quantifying the risk is necessary for making a national population plan and is a traditionally fundamental task in the insurance and annuity businesses. Like other advanced countries, the sustainability of life pensions and the management of longevity risks are becoming important in Asian countries entering the era of aging society. In this study, mortality and pension value sustainability trends are compared and analyzed based on national population and mortality data, focusing on four Asian countries from 1990 to 2017. The result of analyzing the robustness and accuracy of generalized linear/nonlinear models reveals that the Cairns-Blake-Dowd model, the nonparametric Renshaw-Haberman model, and the Plat model show low stability. The Currie, CBD M5, M7, and M8 models have high stability against data periods. The M7 and M8 models demonstrate high accuracy. The longevity risk is found to be high in the order of Taiwan, Hong Kong, Korea, and Japan, which is in general inversely related to the population size.
The aim of this study was to estimate the benefit from repeated examinations in the diagnosis of enterobiasis in nursery school groups, and to test the effectiveness of individual-based risk predictions using different methods. A total of 604 children were examined using double, and 96 using triple, anal swab examinations. The questionnaires for parents, structured observations, and interviews with supervisors were used to identify factors of possible infection risk. In order to model the risk of enterobiasis at individual level, a similarity-based machine learning and prediction software Constud was compared with data mining methods in the Statistica 8 Data Miner software package. Prevalence according to a single examination was 22.5%; the increase as a result of double examinations was 8.2%. Single swabs resulted in an estimated prevalence of 20.1% among children examined 3 times; double swabs increased this by 10.1%, and triple swabs by 7.3%. Random forest classification, boosting classification trees, and Constud correctly predicted about 2/3 of the results of the second examination. Constud estimated a mean prevalence of 31.5% in groups. Constud was able to yield the highest overall fit of individual-based predictions while boosting classification tree and random forest models were more effective in recognizing Enterobius positive persons. As a rule, the actual prevalence of enterobiasis is higher than indicated by a single examination. We suggest using either the values of the mean increase in prevalence after double examinations compared to single examinations or group estimations deduced from individual-level modelled risk predictions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.