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Abstract
Mortality risk is a significant threat to individual life, and quantifying the risk is necessary for making a

national population plan and is a traditionally fundamental task in the insurance and annuity businesses. Like
other advanced countries, the sustainability of life pensions and the management of longevity risks are becoming
important in Asian countries entering the era of aging society. In this study, mortality and pension value sustain-
ability trends are compared and analyzed based on national population and mortality data, focusing on four Asian
countries from 1990 to 2017. The result of analyzing the robustness and accuracy of generalized linear/nonlinear
models reveals that the Cairns-Blake-Dowd model, the nonparametric Renshaw-Haberman model, and the Plat
model show low stability. The Currie, CBD M5, M7, and M8 models have high stability against data periods.
The M7 and M8 models demonstrate high accuracy. The longevity risk is found to be high in the order of Taiwan,
Hong Kong, Korea, and Japan, which is in general inversely related to the population size.
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Improving mortality trends is a global phenomenon including Korea (Kim, 2012). Several coun-
tries have already entered the aging stage, and the longevity risk owing to the increasing life ex-
pectancy is on the rise. Longevity risk ocuurs when longevity increases owing to a decrease in mor-
tality.

Excessive longevity risk negatively affects the sustainability of insurers in multiple coverage areas.
For example, an well-known insurance that contains longevity risk is private and public pensions. Tian
and Zhao (2016); Le et al. (2021) analyzed the financial sustainability and risk of basic public pensions
via stochastic mortality focusing on China. Won (2010) found that as volatility in mortality trends
increases, the risk that the funding ratio of public pensions will fall below a certain level increases.
Kim (2013) quantitatively measured the longevity risk using the shock factor, VaR, and stress trend
method.

Prediction models for such mortality have been used in diverse fields. Stefani and Kwon (2021)
models the longevity risk in a pension by a multi-state model, and Kim (2006) forecasted mortal-
ity rates and predicted the population of Korea using the Lee-Carter model. Chung (2007) used the
Lee-Carter model to predict long-term medical expenses of the national health insurance. Kang et al.
(2015) presented a premium rating model for long-term care insurance suited for in an aging society.
Specifically, stochastic models for mortality are required for insurers, as they must retain solvency
capital against longevity risk. Korean-Insurance Capital Standards (K-ICS) require an insurer to have
sufficient economic capital not to go bankrupt with a 99.5% confidence level for one year. In either
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Solvency II or K-ICS, longevity risk measurement is divided into a separate submodule and proba-
bilistic mortality models is the most promising methodology to measure the risk. For example, Jho
(2020) measured longevity risk by considering stochastic interest rate and stochastic mortality models.

Among a variety of mortality models, we considered the following models: Lee and Carter (1992)
introduced to the actuarial discipline a stochastic mortality model characterizing mortality trends dif-
fered by ages. Renshaw and Haberman (2003) analyzed improved mortality model, which added a
cohort effect to the aforementioned Lee-Carter model. Cairns et al. (2009) approached modeling mor-
tality by introducing a trend term that is linearly dependent on ages and developed a model, called
Cairns-Blake-Dowd model.

It is necessary to perform a comparative analysis of stochastic mortality models to select the most
precise model. Previous studies, for example Kim (2012); Bozikas and Pitselis (2018), have com-
paratively analyzed these stochastic mortality models. Le and Kwon (2021) analyzed the suitability
of stochastic mortality models limited to Korean mortality data. Hwang et al. (2018) conducted a
cross-country comparative study on the trend of male mortality using the Lee-Carter model and re-
vealed that the speed of improvement in male mortality rates was the highest in Korea against other
countries considered in the study. However, this study has the following limitations: first, it is based
on the single stochastic model, which cannot explain the cohort effect. Second, variations in one-year
age-specific trends are smoothed out, since the mortality data are grouped into 5-year age groups.

We recognized these limitations; hence, this study attempted to find more detailed similarities
and differences through comparative analysis among East-Asian countries for the most well-known
models of stochastic mortality, all of which belong to the framework of generalized linear/nonlinear
models. This paper is organized as follows: Section 1 explains all stochastic mortality models covered
in this study. Section 2 fit the models and compares characteristics and parameters between countries
for each mortality model. Section 3 compares mortality models’ predictive power. Section 4 analyzes
sustainability of life annuities based on the mortality models. Section 5 summarizes the results of this
study and suggests future research directions.

1. Stochastic mortality models

The Lee-Carter model with the age-period factors constructed by Lee and Carter (1992) and its mod-
ified model, the Lee-Miller model (Lee and Miller, 2001), were pioneering works that constructed a
statistical model for mortality rates. In this section, we discuss such models and their extended models
in a generalized age-period-cohort framework.

Let E0
x,t be the initial population at age x exposed to the risk of dying in year t, Ec

x,t be a central
population at age x exposed to the risk of dying in year t, Dx,t be the random variable representing the
number of deaths among people at age x in year t, µx,Lett be the force of mortality, dx,t be the number
of observed deaths, q̂x,t be the estimate of mortality rate for the initial exposures, m̂x,t be the estimate
of the central mortality rate for central exposures. In this case, q̂x,t = dx,t/E0

x,t and m̂x,t = dx,t/Ec
x,t. The

distribution of error is determined according to Dx,t. Currie (2016) argued that many common models
of mortality can be fit into generalized linear / non-linear models. Likewise, we build our model upon
the generalized age-period cohort (GAPC) stochastic mortality model framework.

Among the probability distributions of Dx,t, the most easily considerable distribution is the Poisson
or binomial distributions. Brouhns et al. (2005) presents fitting methods for the Lee-Carter model
assuming a Poisson distribution for the number of deaths. Previous studies have mostly dealt with the
Poisson or binomial distribution. For example, Coffie (2015) compares the Poisson and the binomial
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Table 1: Structure of stochastic mortality models in the generalized age-period-cohort framework

Model Equation for ηx,t Included effect
LC αx + β(1)

x κ(1)
t age, period

RH αx + β(1)
x κ(1)

t + γt−x age, period, cohort

Currie αx + κ(1)
t + γt−x age, period, cohort

CBD M5 κ(1)
t + (x − x)κ(2)

t period (2)

CBD M6 κ(1)
t + (x − x)κ(2)

t + γt−x period (2), cohort

CBD M7 κ(1)
t + (x − x)κ(2)

t +
(
(x − x)2 − σ̂2

x

)
κ(3)

t + γt−x period (3), cohort

CBD M8 κ(1)
t + (x − x)κ(2)

t + (xc − x)γt−x period (2), cohort

Plat αx + κ(1)
t + (x − x)κ(2)

t + (x − x)+κ(3)
t + β(0)

x γt−x age, period (3), cohort

LC is the Lee and Carter model in 1992 (Lee and Carter, 1992); RH is the Renshaw and Haberman model in 2006 (Renshaw
and Haberman, 2006); Currie is the Currie model in 2006 (Currie, 2006); CBD M5 is the Cairns-Blake-Dowd M5 model
in 2006 (Cairns et al., 2006); CBD M6 is the Cairns-Blake-Dowd M6 model in 2009 (Cairns et al., 2009); CBD M7 is
the Cairns-Blake-Dowd M7 model in 2009 (Cairns et al., 2009); CBD M8 is the Cairns-Blake-Dowd M8 model in 2009
(Cairns et al., 2009); Plat is the Plat model in 2009 (Plat, 2009).
ηx,t is defined in Equation (1.3), αx is a static age function, κ(i)

t is a period index for the ith mortality trend, (x − x), (x − x),
(x − x)+, (xc − x), {(x − x)2 − σ̂2} are parametric functions of age controling the trend effect across ages. γt−x is a cohort
effect term with β(0)

x modulating it over ages.
The number in parentheses means the number of different period terms included in the regression equation.

distribution’s settings for the Lee-Carter model. For the Poisson distribution of Dx,t,

Dx,t ∼ Poisson
(
Ec

x,tµx,t

)
(1.1)

with E(Dx,t/Ex,t) = µx,t. For the binomial distribution, it is

Dx,t ∼ Binomial
(
E0

x,t, qx,t

)
(1.2)

with E(Dx,t/Ex,t) = qx,t. Generally, Neves et al. (2017) extended the Lee-Carter model with five
different probability models by utilizing generalized autoregressive score models. Hence, the number
of deaths among exposures, that is, the death rate, can be predicted by the predictor ηx,t through the
link function g(·) as follows:

g
(
E

(
Dx,t

Ex,t

))
= ηx,t, (1.3)

where x is age, t is year, c = t − x is year-of-birth (cohort), g is a link function. The ηx,t function
characterizes the stochastic mortality model. αx is an age function or factor, describing mortality by
age. Table 1 summarizes the function and effect of all the models considered in this study.

The κi
t and γt−x follow stochastic processes, which we will discuss in Section 2.2. Even though

a link function, g(·) can be arbitrarily chosen, the canonical link function for the Poisson distribution
is the log function. Thus, we choose this function for g(·). The above parameters are not completely
determined unless some conditions constrain them. Hunt and Blake (2015) carefully discussed the
identifiability issues of general mortality models.

2. Robustness of models

2.1. Data

The study is based on the total population and the number of deaths of selected Asian countries in-
cluding Korea, Japan, Hong Kong, Taiwan from the Human Mortality Database (HMD) (University of
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California, Berkeley and Max Planck Institute for Demographic Research, 2021). The HMD database
is divided by year, age, and gender. We selected common central population and deaths among those
countries for men and women aged 0 to 100 years-old from 2003 to 2017. It provides detailed infor-
mation on population and death counts in one-year age intervals. The short period limitation of the
sample source limits the maximal fit of the stochastic mortality models.

2.2. Model fit

In this Section, we estimate the parameters of the models. We fit the selection of models by maximiz-
ing the following log-likelihood under the assumption of a Poisson distribution:

L
(
dx,t, d̂x,t

)
=

∑
x

∑
t

ωx,t

{
dx,t log d̂x,t − d̂x,t − log dx,t!

}
, (2.1)

where ωx,t are weights whose values are 0 if the observed data of (x, t) are absent, and 1 if the data are
present. BIC is defined as follows:

BICm = L
(
φ̂m

)
−

1
2
νm log N, (2.2)

where φm is the parameter set for model m, νm is the effective number of parameters (degree of
freedom) for model m, φ̂m is the maximum likelihood estimate of the parameter set, L(φ̂m) is the
maximum log-likelihood, and N is the number of observations.

Lee and Carter (1992) fitted their models by singular value decomposition (SVD), and Bell and
Monsell (1991) used the principal component analysis, and Girosi and King (2008) suggested a
Bayesian approach. Currie (2006) showed that most, if not all, stochastic mortality models are gener-
alized linear or non-linear models. As in Millossovich et al. (2018), we estimate the models’ parame-
ters by fitting them to generalized non-linear models that have Dx,t/Ex,t as a response variable and αx,
κ(1)

t , (x − x)κ(2)
t , [(xl − x)+ + b(xl − x)+)2]κ(3)

t , β(0)
x γt−x as explanatory variables. We used the StMoMo

package in R (Villegas et al., 2018) to fit the parameters and predict and simulate future mortalities.

2.3. Robustness of models

Understanding how robust the model is against a selection of train data is important for verifying the
validity of the model itself and for trusting the predictive power of the model. In Asian countries, the
history of collecting mortality data has not been long; therefore, it is necessary to check whether the
models’ parameters are robust for various sample data.

The robustness of our stochastic mortality models for E&W, UK, and the US can be tested by
fitting the models with different train data set. For testing the robustness, we prepared two data set of
numbers of deaths and population: the base data group ranging from the year 1990 to 2017 (Set1),
and the other test data group from 2003 to 2017 (Set2). For this work, we dropped the data set from
Korea, since the mortality data of Korea were not consistently collected before the year 2003. From
Figure 1 to Figure 5 we show parameter estimates of the models considered in our study by countries.

βx is a sensitivity to mortality trends at age x. Figure 1 shows that LC and RH models are not
sufficiently robust to changes in data sets, though the age patterns of the two data sets coincide. For
example, in the LC model, the patterns of the base βx and the test βx decrease when age goes from
0 to 40 years old, increase until 75 years old, and decrease until 100 years old. In contrast, the raw
values of the base βx (large data set) are more stable than that of test βx (small data set). Cairns et al.
(2009, 2011); Currie (2016) finds that the model is not robust in selecting data sets. As the RH model
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Figure 1: Estimates of βx by LC (top row), RH model (bottom row) and by countries (Japan, Hong Kong, Taiwan,
left-to-right) using the base data set from the year 1990 to 2017 (solid line) or the test data set from the year 2003

to 2017 (dotted line). Each horizontal axis is age (unit: years old).

Figure 2: Estimates of κ(1)
t by LC, RH, Currie, M5, M7, M8, Plat model (top-to-bottom) and by countries (Japan,

Hong Kong, Taiwan, left-to-right) using the base data set from the year 1990 to 2017 (solid line) or the test data
set from the year 2003 to 2017 (dotted line). Each horizontal axis represents the year.

contains more parameters, it can be inferred to be less robust than the LC model. Figure 1 shows that
the instability owing to the small size of samples (dotted line in the figure) is more prominent in the
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Figure 3: Estimates of κ(2)
t by M5, M7, M8, Plat model (top-to-bottom) and by countries (Japan, Hong Kong,

Taiwan, left-to-right) using the base data set from the year 1990 to 2017 (solid line) or the test data set from the
year 2003 to 2017 (dotted line). Each horizontal axis represents the year.

RH model, for example, for Hong Kong (the center plot in the bottom). Moreover, the positions of
peaks and troughs are a little bit offset between data sets.

κ(i)
t is a period index for the ith mortality trend. Figure 2 shows the first mortality trend for each

model. There are two things to note in interpreting the results. First, the meaning of κ(1)
t differs

by models: κ(1)
t in the LC and RH model is a sole mortality trend modulated by non-parametric

age factors, κ(1)
t in the other models have no additional control parameters. Thus, the models are

considered more robust than other non-parametric models such as LC and RH. Cairns et al. (2009,
2011); Currie (2016) argued that their parametric models with no age-modulating coefficients are
more robust than non-parametric models of LC and RH. Second, M5, M7, and M8 models do not have
identifiability issues, whereas constraints are imposed to fix the parameters κ(i)

t in LC, RH, Currie, and
Plat model such that their sums are equal to zero:

∑
t κ

(i)
t = 0. However, they are centered on the yearly

midpoint of the data. So the slopes of κ(i)
t do matter, and they are needed to be put under scrutiny rather

than their actual values.
In Figure 2, we notice that the LC, Currie, M5, M7, and M8 model have almost numerically

stable values of κ(1)
t , whereas the κ(1)

t in the RH and Plat model have numerical instabilities: for
example, they fail to converge to a significant value (in the RH model for Hong Kong and Taiwan),
or Set1 and Set2 have slightly different trends in the Plat model. The data set (Set2) from 2003 to
2017 has 15 years, almost half of Set1. It seems 15 years are not sufficient for robust estimation
of the model parameters. Furthermore, the Plat model produces distinguishable patterns between
different countries. Furthermore, κ(1)

t s keep decreasing and the patterns of their yearly changes differ
by country.

κ(2)
t s are shown in Figure 3. The M5, M7, and M8 models are numerically stable even with the

small data set (Set2), whereas the Plat model may produce different estimates depending on sample
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Figure 4: Estimates of κ(3)
t by M7 (top row), Plat model (bottom row) and by countries (Japan, Hong Kong,

Taiwan, left-to-right) using the base data set from the year 1990 to 2017 (solid line) or the test data set from the
year 2003 to 2017 (dotted line). Each horizontal axis represents the year.

periods or sample data. When it comes to their trends, κ(2)
t slowly increases by the year, and the

patterns of their yearly changes are almost similar for all models and all countries.
The above properties are still valid for κ(3)

t as shown in Figure 4. Hereby, it is necessary to note
that κ(2)

t represents mortality trends modulated by age difference from mean age, whereas the meaning
of κ(3)

t differs by models. The quadratic age term affecting mortality trends, κ(3)
t in the M7 model

decreases by the year and the patterns of their yearly changes are almost similar for all countries. In
contrast, the old age term affecting mortality trends, κ(3)

t in the Plat model decreases by the year and
the patterns of their yearly changes differ by country.

γt−x is shown in Figure 5. Hunt and Villegas (2015) assesses the impact of the existence of an
additional identifiability issue when a model has a cohort effect term, to the robustness of the model,
and they improve the robustness and convergence rate of the models. Interpreting the numerical
stabilities of γt−x needs more care: they seem to have numerical stability and no dependence on the
data volume for all models except the RH and Plat model. Also, although the γt−x in the Currie model
has similar patterns for all countries, it zitters in some dubious ways at the end of data periods. When it
comes to trends, they change in time differently over models, since competing terms differ by models.

Overall, the LC model is simple and robust but not quite exact compared to other models. The
RH and Plat model lacks in sufficient stability. Currie, M5, M7, and M8 models are all parametric,
they require fewer paramter estimations than other models, and they are numerically more stable.
However, they are not superior to other models. It might have resulted from an artifact of parametric
properties of the models.

3. Forecast and predictive power

3.1. Forecast

Like other stochastic mortality models, the dynamics of our model are driven by the stochastic pro-
cesses of period indices κi

t and Cohort index γt−x. A first option is a multivariate ARIMA processes
(for example, Lee and Carter (1992), a functional data model in Hyundman and Ullah (2007)), a sec-
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Figure 5: Estimates of γt−x by RH, Currie, M7, M8, and Plat model (top-to-bottom) and by countries (Japan,
Hong Kong, Taiwan, left-to-right) using the base data set from the year 1990 to 2017 (solid line) or the test data

set from the year 2003 to 2017 (dotted line). Each horizontal axis is t − x.

ond option is a set of complicated univariate ARIMA process (for example, an AR-ARCH model in
Giacometti et al. (2012), exponential smoothing state space model in Hyndman et al. (2002)). Feng
and Shi (2018) argues that the accuracy of multivariate ARIMA does not outperform the univariate
ARIMA processes, and the exponential smoothing state-space model is the best in forecasting accu-
racy. In our model, we assume that each period index follows a univariate ARIMA(pi, di, qi) model
for each period index using the notation in Millossovich et al. (2018):

∆diκ(i)
t = δ(i)

0 + φ(i)
1 ∆diκ(i)

t−1 + · · · + φ(i)
pi

∆diκ(i)
t−pi

+ ξ(i)
t + δ(i)

1 ξ
(i)
t−1 + · · · + δ(i)

qi
ξ(i)

t−qi
, (3.1)

where ∆ is the difference operator, δ(i)
0 is the drift term, pi is the order of the autoregressive model,

di is the degree of differencing, qi is the order of the moving-average model, φ1, . . . , φpi are the au-
toregressive coefficients with φpi , 0, δ1, . . . , δqi are the moving average coefficients with δqi , 0.
ξ(i)

t , . . . , ξ
(i)
t−qi

follow the white noise process with the normal distribution, N(0, (σ(i)
ξ )2).

We assume that the cohort index is independent of the dynamics of other period indices, and it
also follows a univariate ARIMA process as commonly adopted in previous research (Cairns et al.,
2011).

∆dγc = δ0 + φ1∆dκc−1 + · · · + φp∆dκc−p + ξc + δ1ξc−1 + · · · + δqξc−q, (3.2)

where c = t−x and ξt, . . . , ξc−q follow the white noise process with the normal distribution,N(0, (σξ)2).
All other notations are similar to the above.

The error in (3.2) comes only from the error while forecasting period indices. There exist, how-
ever, uncertainties in estimating the parameters of mortality models. We estimate the parameter uncer-
tainty by the bootstrap method. Specifically, we utilized the bootstrap algorithm already implemented
in the package StMoMo (Millossovich et al., 2018), wherein the semi-parametric bootstrap method
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Figure 6: Mortality rate qx,t of Japan at aged 70 by LC, RH, Currie, M5, M7, M8, Plat model (top-left to bottom-
right) using the base data set from the year 2003 to 2017 to 2017. Each horizontal axis represents the year.

Table 2: BIC of stochastic mortality models in the generalized age-period-cohort framework

Model Korea Japan Hong Kong Taiwan Mean rank
LC 7782 (6) 8850 (4) 6063 (7) 6531 (4) 5.25 (6)
RH 7081 (5) 8247 (3) 5991 (5) 6647 (6) 4.75 (5)

Currie (APC) 7055 (4) 8144 (2) 5828 (3) 6457 (3) 3.00 (3)
CBD M5 15857 (7) 54825 (7) 6033 (6) 6957 (7) 6.75 (7)
CBD M7 6817 (2) 9295 (5) 5729 (2) 6412 (1) 2.50 (1)
CBD M8 6807 (1) 10968 (6) 5646 (1) 6430 (2) 2.50 (1)

Plat 6996 (3) 8066 (1) 5929 (4) 6561 (5) 3.25 (4)

The numbers in parentheses indicate the ranking of each model by country.
A mean rank means the average of rankings over countries.

was originally proposed by Brouhns et al. (2005), and the residual bootstrap method was discussed
by Koissi et al. (2006) in the actuarial literature.

Figure 6 shows sample scenarios of future mortality rates generated by 7 models by year for a
person aged 70 in 2017 in Japan. Future mortality rates at other ages or in other countries are similar.

3.2. Predictive power

This section verifies the predictive power of our proposed model. Accuracy measures how close an
estimate of a fitted model is to the actual value for train data. In contrast, predictive accuracy or
predictive power indicates how well a model fitted to train data predicts actual values for test data.
Here we estimate predictive power for each model. We divided the data set into train data and test
data. The period of the train data ranges from the year 2003 to 2014. That of the test data from the
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Table 3: Root mean squared error (RMSE) of stochastic mortality models in the generalized age-period-cohort
framework (unit: 10−3)

Model Korea Japan Hong Kong Taiwan Mean rank
LC 4.450 (3) 2.191 (2) 7.514 (7) 3.713 (2) 3.50 (3)
RH 4.260 (2) 2.963 (3) 5.276 (5) 3.644 (1) 2.75 (2)

Currie (APC) 5.208 (4) 8.489 (6) 3.524 (3) 6.736 (5) 4.50 (5)
CBD M5 15.234 (7) 3.439 (4) 6.192 (6) 9.278 (7) 6.00 (7)
CBD M7 6.728 (5) 8.484 (5) 2.988 (1) 5.630 (4) 3.75 (4)
CBD M8 9.183 (6) 15.932 (7) 3.479 (2) 8.490 (6) 5.25 (6)

PLAT 3.796 (1) 1.087 (1) 4.149 (4) 4.186 (3) 2.25 (1)

The numbers in parentheses indicate the ranking of each model by country.
A mean rank means the average of rankings over countries.

Table 4: Symmetric mean absolute percentage error (SMAPE) of stochastic mortality models in the generalized
age-period-cohort framework (unit: percentage)

Model Korea Japan Hong Kong Taiwan Mean rank
LC 3.931 (2) 5.481 (3) 10.536 (7) 4.041 (2) 3.50 (4)
RH 4.163 (3) 3.456 (2) 6.837 (3) 3.344 (1) 2.25 (2)

Currie (APC) 4.509 (4) 8.491 (4) 5.456 (1) 6.484 (4) 3.25 (3)
CBD M5 10.238 (6) 11.570 (5) 10.158 (6) 6.790 (5) 5.50 (6)
CBD M7 7.327 (5) 25.938 (6) 6.860 (4) 10.496 (6) 5.25 (5)
CBD M8 14.327 (7) 35.805 (7) 7.477 (5) 14.462 (7) 6.50 (7)

PLAT 3.894 (1) 2.831 (1) 6.509 (2) 4.881 (3) 1.75 (1)

The numbers in parentheses indicate the ranking of each model by country.
A mean rank means the average of rankings over countries.

year 2015 to 2017.

We adopt two different measures for comparison of prediction errors. Root mean square error
(RMSE) and symmetric mean absolute percentage errors (SMAPE). They are defined as the following:

RMSE =

√√√
1
h

T+h∑
T+1

(ŷt − yt)2, (3.3)

SMAPE =
1
h

T+h∑
T+1

|ŷt − yt |

(|yt | + |ŷt |)/2
, (3.4)

where yt = qx,t is the observed mortality rate, ŷt = q̂x,t is the forecasted mortality rate.

Tables 2–4 show the BICs, root mean squared error (RMSE), and symmetric maximum absolute
percentage error (SMAPE) of the fitted models for each country. Although the model fit results are
different for each country, a certain trend can be found for the most suitable and the most inappropriate
models. LC and Currie have the moderate ranks in all indices; Plat and RH are the best and the second-
best model in RMSE and SMAPE, respectively. However, they have a moderate rank in BIC. M7 and
M8 are the best in BIC. However, they have a moderate rank in RMSE and SMAPE. M5 is the worst
model for all indices. Nevertheless, those findings do not necessarily mean that the M5 model is
always unsuitable. This model has the advantage of having a relatively small number of parameters
and a simple form.
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4. Sustainability of life annuities

Longevity poses risks from various perspectives. Solvency II suggests including at least level, volatil-
ity, and trend risk when measuring the longevity risk. Additionally, model risk, idiosyncratic risk
(Buckham et al., 2010), mis-estimation risk (Richards, 2016) can be considered as risks associated
with longevity. In the quantitative measurement of longevity risk, the stressed-trend approach, shock
approach, and value-at-risk approach exist among others (Richards et al., 2014). The stressed-trend
approach finds percentiles from the probability distribution of pension values, which are generated
by first stressing the mortality trends and then simulating forecasted stochastic mortalities. This is
also called a run-off approach because it considers all future cash flows over an extended period. The
shock approach is a method of calculating risk capital by first multiplying the same shock factor by
the mortality rates for each age, recalculating the pension value, and finally obtaining offset amount
offset from the pre-shock pension value. Finally, the value-at-risk approach uses a stochastic mortality
model similarly to the stressed-trend approach, taking into account the requirements of Solvency II,
which requires risk capital for a one-year window. It, however, differs from the stressed-trend ap-
proach in the following processes. In the first step, stress such as volatility risk is applied for one
year from the time of measurement to create a new set of samples. Then, the same statistical model
is fitted to this new data to predict new mortality rates. A value-at-risk is measured in the statistical
distribution of new pension values obtained by repeating these simulations n times.

To measure the longevity risk, we follow a new approach, a scenario approach similar to the
stressed-trend approach. In Solvency II, which requires measurement of risk in a one-year window,
the value-at-risk framework might be the most appropriate. However, this study aims to identify
long-term risks by paying attention to the sustainability of capital invested in pensions. The stressed-
trend approach applies the same constant shock to all future mortalities, but in the scenario approach,
different random variable of shocks are applied to different years. This is called a scenario since it
simulates forecasted mortalities. A Value-at-Risk value can be calculated from the distribution of
these simulated mortalities.

We explain this scenario approach in detail. Values of annuities are calculated with discount rates
of r as follows:

aZ=0
x:ω−x =

ω−x∑
t=1

E
[
e−rt

t pZ=0
x

]
=

ω−x∑
t=1

E
[
e−rt

(
1 − tqZ=0

x

)]
, (4.1)

where t px is a probability of survival at time t of a policyholder at age x, ω is the ultimate age which
is 100 years-old in our work and r is a discount rate. We assume the discount rate is constant. In
contrast, each pension value of simulation path i is as follows:

aZi

x:ω−x
=

ω−x∑
t=1

E
[
e−rt

t pZi
x

]
=

ω−x∑
t=1

E
[
e−rt

(
1 − tqZi

x

)]
, (4.2)

where Zi is not constant in time, but a scenario of the random variable Z following the standard normal
distributions. We define a random variable of pension value at outset age x with a policy period of
ω − x, ax:ω−x . The ith realization of the random variable is aZi

x:ω−x
. Then, the value-at-risk at the

significance level of p by the scenario approach can be empirically estimated as follows:

VaRp
(
ax:ω−x

)
= inf

{
ax:ω−x

∣∣∣Fp
(
ax:ω−x

)
≥ p

}
. (4.3)
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Table 5: Expected values of annuities of an insured at age 60

Model Korea Japan Hong Kong Taiwan Mean
LC 7.647 8.157 8.535 7.145 7.871
RH 7.456 8.087 10.012 8.138 8.423

Currie (APC) 7.991 8.303 8.556 7.259 8.027
CBD M5 7.790 8.100 8.560 7.161 7.903
CBD M7 7.882 8.327 8.580 7.183 7.993
CBD M8 8.863 9.143 8.995 7.847 8.712

Plat 7.720 8.224 8.536 7.103 7.896
Mean 7.907 8.334 8.825 7.405 8.118

The main difference between Equation (4.1) and Equation (4.3) is that Equation (4.1) is the pen-
sion value obtained by the mortality rate with the random variable Z equal to 0, the average value of
the standard normal distribution. In this scenario, the mortality curve follows the central line of sim-
ulated stochastic mortalities in the future. In contrast, Equation (4.3) is the percentile of the pension
value distributions obtained from the simulated stochastic mortality rates, each with different scenar-
ios of random variable Z. This is closer to reality than just setting Z to 0 or a stress factor. This is
because it is generally true to assume annual mortality rates as independent of each other, except for
cases where mortality rates of consecutive years are affected by pandemic diseases over the years.

This analysis considers a male policyholder at age 60 at the inception of an annuity contract
that pays 1 at the end of every policy year. We assumed that the discount rate of r is 4% for all
years. For the time-series process of κ(i)

t , the best-fit parameters were applied for each model and
each country. γc is assumed to follow the ARIMA (1, 1, 0) process when necessary. In previous
studies, the parameters of time series processes on the cohort effecte range from p; q = 0, 1, 2, 3, and
d = 0, 1, 2. The parameter set of p = 1, q = 1, d = 0 is the most commonly used in the original studies
(Renshaw and Haberman, 2006) and review papers (Villegas et al., 2018; Lovász, 2011). Assuming
that the time series process of the cohort effect is independent of the dynamics of period indices, it
can be considered that the time series process of the cohort will be similar regardless of the models
or countries. The annuity period is 40 years, p is 0.995%, and the number of simulations is 10,000
times.

Table 5 shows the expected value of the annuity for the policyholder. According to the CIA’s
2017 estimates (Central Intelligence Agency, 2022), life expectancy at birth in Hong Kong, Japan,
Korea, and Taiwan is ranked 7, 2, 12, and 41st worldwide. However, the estimate is based on the
assumption that the current mortality rate remains the same. Table 5 reflects the tendency of mortality
rates to decrease differently from country to country according to the stochastic mortality scenarios,
showing that the mortality rate is low and the annuity value is high in the order of Hong Kong, Japan,
Korea, and Taiwan. In general, if the life expectancy is high (if the expected mortality rate is low),
the expected value of the annuity is high. In contrast, from Table 5, we find a counterexample to such
a relation, which is that Hong Kong’s current life expectancy is lower than that of Japan. However,
Hong Kong’s annuity value is higher than that of Japan. This suggests that Hong Kong’s mortality rate
is expected to decline faster in the future than that of Japan. Bartlett and Phillips (1995) had already
predicted in 1995 that Hong Kong’s aging rate would overtake Japan.

On the other hand, the expected values in Table 5 show extraordinary values for some models, so
care must be taken when interpreting the results. For example, the expected values of the RH model
and the Plat model are higher than those of the other models, which seems to be due to the low stability
of the two models. Thus, it is not recommended to accept the results without further analysis on, for
example, stability of the model.
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Table 6: VaR0.995(ax:ω−x )/aZ=0
x:ω−x

− 1, ratio of VaR to expected value of annuities for an insured at age x = 60
(unit: %)

Model Korea Japan Hong Kong Taiwan Mean
LC 2.381 2.371 4.797 3.537 3.272
RH 4.596 2.947 3.318 6.390 4.313

Currie (APC) 3.376 2.671 4.587 4.984 3.905
CBD M5 4.184 2.958 5.253 6.632 4.757
CBD M7 4.612 3.056 5.241 6.842 4.938
CBD M8 4.076 2.819 4.218 6.169 4.321

Plat 4.342 2.850 5.261 6.777 4.808
Mean 3.938 2.911 4.668 5.904 4.331

Table 6 presents the ratio of VaR to the expected value of an annuity for the policyholder,
VaR0.995(ax:ω−x )/aZ=0

x:ω−x
−1. The range of the VaR ratio in Table 2 is 2 to 6% is similar to the Richards

et al. (2014)’s 3 to 6% of the risk capital calculated by the 1−year VaR approach for the 55 to 90
years-old policyholders. It is found that countries with a relatively high risk of longevity compared
to the expected annuity values are in the order of Taiwan, Hong Kong, Korea, and Japan. Taiwan
and Hong Kong, ranked No.1 and No.2 respectively, have a small population among comparative
countries; therefore, there is a greater risk of longevity in Taiwan owing to the baseline effect (the
denominator of VaR ratio), which is their low annuity value compared to Hong Kong. In the case
of Japan, the uncertainty of annuity payments is the lowest owing to their large population and high
annuity value. Summarily, the stability and sustainability of annuity payments of small countries by
population are low, and vice versa.

Richards et al. (2014) showed that the capital requirement for annuities depends on models, poli-
cyholder’s outset age, and discount rates. According to the study, the ratio of the capital requirement
to the value of annuities may depend on models and it may vary by two or three times depending on
age. This study also shows that VaR varies depending on the model. It should also be noted that the
level of VaR may vary depending on the age and the discount rate is not considered in this study. How-
ever, the sensitivity analysis as an exercise can show that when the discount rate increases (decreases),
the value of annuities decreases (increases) and the longevity risk increases (decreases).

5. Conclusion

The progress trend toward an aging society worldwide has increased concerns about the sustainability
of the pension business. The sustainability of pensions can be predicted and analyzed through stochas-
tic process models of mortality. Additionally, the comparison of stochastic mortality trends between
countries is important by comparison itself. However, it is of greater importance in that it makes it
possible to understand the globaltrend and differences between countries regarding the stability of
future pension payments.

This study compared the robustness and predictive power of the stochastic mortality model, the
Lee-Carter model (LC) and its generalized models including the Renshaw-Haberman (RH), Currie,
Cairns-Black-Dowd M5, M7, M8, and Plat model focusing on four Asian countries. The nonparamet-
ric models, RH and Plat models have low stability, and the other models, Currie, M5, M7, and M8
models have relatively high stability. Among the latter, the M7 and M8 models show high predictive
power.

The pension value is found to be high in the order of Hong Kong, Japan, Korea, and Taiwan. This
order generally coincides with the order of life expectancy of countries, as the pension value has a
negative correlation with the expected mortality rate. In contrast, the relative instability of pension
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value against changes in survival rate, that is, the relative longevity risk ranges from 2 to 6%. It is in
the order of Taiwan, Hong Kong, Korea, and Japan, generally in the opposite order of population size.
The smaller the population, the less sustainable the pension is.

This study has limitations in that it focuses on four Asian countries with reliable long-term mor-
tality data, and it is necessary to expand the study by comparing it with different countries in the
future. It is also necessary to investigate the sustainability of health insurance, which is as important
as longevity risk in an aging society, or general whole-life insurance with mortality risk, the opposite
of longevity risk.
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