• Title/Summary/Keyword: Indium-Tin Oxide

Search Result 972, Processing Time 0.033 seconds

Optimization of Printing Process for the Development of Metal-oxide Resistivity Sensor (전기저항형 금속산화물 센서의 인쇄공정 최적화에 관한 연구)

  • Lee, Seokhwan;Koo, Jieun;Lee, Moonjin;Jung, Jung-Yeul;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.353-358
    • /
    • 2016
  • In this paper, we have studied about the optimum fabrication condition of the printed Indium Tin Oxide (ITO) layers for the electrical resistance-type sensor application. We have investigated on the substrates surface treatments, mixing ratio of organic binder/ITO powder, and viscosity of the printing paste to determine the optimum condition of the screen printed ITO layer. Also, we found that the printing condition is closely related with the sensor performance. To know the feasibility of printed ITO layer as an electrical resistance-type sensor, we have fabricated the ITO sensors with a printed and sputtered ITO layers. The printed ITO films revealed $10^2$ times higher sensitivity than the sputtered ITO layer. Also, the sputtered ITO layer exhibited an operating temperature of $127^{\circ}C$ at the operating voltage of 5 V. While, in case of the printed ITO layer showed the operating temperature of $27.6^{\circ}C$ in high operating voltage of 30 V. We found that the printed ITO layer is suitable for the various sensor applications.

Process Optimization of ITO Film on PC Substrate Deposited by In-line Sputtering Method for a Resistive-type Touch Panel (인라인 스퍼터링에 의한 저항막 방식 터치패널용 ITO 기판 제조공정 최적화 기술)

  • Ahn, M.H.;Cho, E.S.;Kwon, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.440-446
    • /
    • 2009
  • Indium tin oxide(ITO) substrate is one of the key components of the touch panel and its sputtering process is dependent on the characteristics of various touch panel, such as driving type, size of panel, and the intended use. In this study, we optimized the sputtering condition of ITO film on polycarbonate(PC) by using in-line sputtering method for the application to resistive type touch panel. We varied the $O_2$/Ar gas ratio, sputtering power, pressure and moving speed of substrate to deposit ITO films at room temperature with the base vacuum of $1{\times}10^{-6}\;torr$. The sheet resistance and its uniformity, the transmittance, the thickness of the ITO film on PC substrate are investigated and analyzed. The optimized process parameters are as follows : the sheet resistance is $500{\pm}50\;{\Omega}$/□, the uniformity of sheet resistance is lower than 10%, the transmittance is higher than 87 % at 550nm, and the thickness is about 120~250. The optimized deposition conditions by in-line sputtering method can be applied to the actual mass production for the ITO film manufacturing technology.

A Study on the Fabrication and Characteristics of ITO Thin Film Deposited by Magnetron Sputtering Method (마그네트론 스퍼터링법을 이용한 Indium-Tin Oxide 박막의 제작과 그 특성에 관한 연구)

  • 조길호;김여중;김성종;문경만;이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.61-69
    • /
    • 2000
  • Indium-Tin Oxide (ITO) films were prepared on the commercial glass substrate by the Magnetron Sputtering method. The target was a 90wt.% $In_2O_3$-10wt.% $SnO_2$with 99.99% purity. The ITO films deposited by changing the partial pressure of oxygen gas ($O_2$/(Ar+$O_2$)) of 2, 3 and 5% as well as by changing the substrate temperature of $300^{\circ}C$ or $500^{\circ}C$. The influence of substrate pre-annealing and pre-cleaning on the quality of ITO film were examined, in which the substrate temperature was $500^{\circ}C$ and oxygen partial pressure was 3%. The characteristics of films were examined by the 4-point probe, Hall effect measurement system, SEM, AFM, Spectrophotometer, and X-ray diffraction. The optimum ITO films have been obtained when the substrate temperature is $500^{\circ}C$ and oxygen partial pressure is 3%. At optimum condition, the film showed transmittance of 81%, sheet resistivity of $226\Omegatextrm{cm}^2$, resistivity($\rho$) of $5.4\times10^{-3}\Omega$cm, carrier concentration of $1.0\times10^{19}cm^{-3}$, and carrier mobility of $150textrm{cm}^2$Vsec. From XRD spectrum, c(222) plane was dominant in the case of substrate temperature at $300^{\circ}C$, without regarding to oxygen partial pressure. However, in the case of substrate temperature at $500^{\circ}C$, c(400) plane was grown together with c(222) plane, only for oxygen partial pressure of 2 and 3%. In both case of chemical and ultrasonic cleaning without pre-annealing the substrate, it showed much almost same sheet resistivity, resistivity($\rho$), transmittance, carrier concentration, and carrier mobility. In case of $500^{\circ}C$/60min pre-annealing before ITO film deposited, both transimittance and carrier mobility are better than no pre-annealing, because pre-annealing is supposed to remove alkari ions diffusion from substrate. ITO film deposited on the Corning 0080 sybstrate showed a little bit better sheet resistivity, resistivity($\rho$), transimittance, carrier concentration than the film deposited on commercial glass. But no differences between Corning substrate and pre-annealed commercial glass substrate are found.

  • PDF

Studies on the Toxicity and Distribution of Indium Compounds According to Particle Size in Sprague-Dawley Rats

  • Lim, Cheol Hong;Han, Jeong-Hee;Cho, Hae-Won;Kang, Mingu
    • Toxicological Research
    • /
    • v.30 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Objectives: The use of indium compounds, especially those of small size, for the production of semiconductors, liquid-crystal panels, etc., has increased recently. However, the role of particle size or the chemical composition of indium compounds in their toxicity and distribution in the body has not been sufficiently investigated. Therefore, the aim of this study was to examine the effects of particle size and the chemical composition of indium compounds on their toxicity and distribution. Methods: Male Sprague-Dawley rats were exposed to two different-sized indium oxides (average particle sizes under 4,000 nm [IO_4000] and 100 nm [IO_100]) and one nano-sized indium-tin oxide (ITO; average particle size less than 50 nm) by inhalation for 6 hr daily, 5 days per week, for 4 weeks at approximately $1mg/m^3$ of indium by mass concentration. Results: We observed differences in lung weights and histopathological findings, differential cell counts, and cell damage indicators in the bronchoalveolar lavage fluid between the normal control group and IO- or ITO-exposed groups. However, only ITO affected respiratory functions in exposed rats. Overall, the toxicity of ITO was much higher than that of IOs; the toxicity of IO_4000 was higher than that of IO_100. A 4-week recovery period was not sufficient to alleviate the toxic effects of IO and ITO exposure. Inhaled indium was mainly deposited in the lungs. ITO in the lungs was removed more slowly than IOs; IO_4000 was removed faster than IO_100. IOs were not distributed to other organs (i.e., the brain, liver, and spleen), whereas ITO was. Concentrations of indium in the blood and organ tissues were higher at 4 weeks after exposure. Conclusions: The effect of particle size on the toxicity of indium compounds was not clear, whereas chemical composition clearly affected toxicity; ITO showed much higher toxicity than that of IO.

Electrical and Optical Properties of Al-doped ZnO Thin Films (Al-doped ZnO 투명 전도성 박막(TCO)의 전기적 광학적 특성)

  • Hong, Youn-Jeong;Lee, Kyu-Mann;Kim, In-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.35-39
    • /
    • 2007
  • ITO(Indium Tin Oxide) is the most attractive TCO(Transparent Conducting Oxide) materials for LCD, PDP, OLEDs and solar cell, because of their high optical transparency and electrical conductivity. However due to the shortage of indium resource, hard processing at low temperature, and decrease of optical property during hydrogen plasma treatment, their applications to the display industries are limited. Thus, recently the Al-doped ZnO(AZO) has been studied to substitute ITO. In this study, we have investigated the effect of different substrate temperature(RT, $150^{\circ}C$, $225^{\circ}C$, $300^{\circ}C$) and working pressure(10 mTorr, 20 mTorr, 30 mTorr, 80 mTorr) on the characteristics of AZO(2 wt.% Al, 98 wt.% ZnO) films deposited by RF-magnetron sputtering. We have obtained AZO thin films deposited at low temperature and all the deposited AZO thin films are grown as colunmar. The average transmittance in the visible wavelength region is over 80% for all the films and transmittance improved with increasing substrate temperature. Electrical properties of the AZO films improved with increasing substrate temperature.

  • PDF

DC-sputtering으로 증착한 IZO 박막의 열처리 온도에 따른 구조적 특성

  • Kim, Jun-Ho;Mun, Jin-Yeong;Kim, Hyeong-Hun;Lee, Ho-Seong;Han, Won-Seok;Jo, Hyeong-Gyun;Kim, Heung-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.468-468
    • /
    • 2008
  • IZO(Indium zinc oxide) 박막은 화학적으로 안정하면서, 가시광 영역 (380~780 nm)에서 80% 이상의 높은 투과도와 낮은 전기비저항, 3.5 eV 이상의 넓은 밴드갭 특성을 가진다. IZO 박막의 이러한 특성 때문에 평판표시소자 (Flat Panel Display; FPD) 및 태양전지와 같은 광전소자들의 차세대 투명전도성 산화물(Transparent Conducting Oxide; TCO) 박막 재료로 주목 받고 있다. 특히 평판표시소자(FPD)들의 고해상도, 대면적화 및 경량화로 인해 투명전극용 박막의 고품위 특성이 요구되고 있다. 현재 투명 전극으로 널리 사용되고 있는 고가의 ITO(indium tin oxide)를 대체할 다성분계 산화물 투명 전극 중에서 투광성과 전기전도도가 좋은 IZO 박막에 대한 많은 연구가 진행되고 있다. 이러한 IZO 박막의 광학적, 전기적 특성은 박막 내의 조성 차이와 미세구조에 의해 결정된다. 따라서 고품위의 IZO 박막 형성을 위해서 결정구조와 미세구조에 대한 분석이 필수적이다. 본 연구에서는 Si(100) 기판 위에 DC-sputtering으로 증착한 IZO 박막의 열처리 온도에 따른 구조적 특성을 알아보기 위해 300~$600^{\circ}C$ 공기분위기에서 1시간 동안 열처리 하였다. 표면 형상(surface morphology)은 원자현미경(AFM). 결정구조는 X-선 회절(XRD)로 분석하였고, 미세구조는 투과전자현미경(TEM)으로 관찰하였다.

  • PDF

Applicability of Serum Krebs von den lungen-6 as a Biological Exposure Index for Workers Exposed to Indium (인듐 노출 근로자를 위한 생물학적 노출지표로써 혈청 Krebs von den lungen-6의 활용가능성)

  • Won, Yong Lim;Yi, Gwang Yong;Lee, Mi-Young;Kim, Eun-A
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Objectives: Although several cases of lung diseases caused by indium have been reported in Japan, the United States and China, South Korea, which is estimated to have been the world's largest consumer of indium, has not yet established a criteria for the diagnosis of lung diseases caused by indium exposure. In this study, we tried to determine the applicability of the Krebs von den lungen-6, which has been widely recognized for its use with interstitial lung disease in Japan, as a biological exposure index for indium. Methods: Methods: The analysis of indium in serum was conducted by inductively coupled plasma mass spectrometry and the analysis of KL-6 in serum was carried out using enzyme-linked immunosorbent assay kit. Results: The indium levels in serum were distributed from below the detection limit to a peak of $125.78{\mu}g/L$, and the values of the KL-6 were distributed from 104.5 U/mL to 2162.2 U/mL. The serum indium and KL-6 showed good correlation ($R^2$=0.389,pfortrend=0.000) and smoking did not affect the KL-6. Conclusions: The usefulness of KL-6 as a specific biomarker for interstitial lung disease has been recognized. In addition, it is expected that effective prevention of health problems can be achieved by determining the lung-damage progress at an early stage according to individual susceptibility.

A study on the formation of ITO thin film by DC reactive magnetron sputtering (반응성 마그네트론 프로세스에 의한 ITO박막 형성에 관한 연구)

  • Kwak, Y.S.;Cho, J.S.;Park, C.H.;Ha, H.J.;Sung, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.897-899
    • /
    • 1992
  • This paper deals with the characteristics of Indium Tin Oxide(ITO) sputtered by the reactive magnetron sputtering process. ITO films have been grown at various substrate temperatures(R.T, 100$^{\circ}C$, 200$^{\circ}C$, 240$^{\circ}C$) and we used the target material of alloy of Indium and Tin. The electrical and optical properties of the ITO film have been investigated and the effect of magnetic field to the properties of ITO was studied. We have studied how much the improvement of transmission rate and sheet resistivity by heat treatment was. The sample with good electrical and optical properties can be obtained for the low substrate temperature of 200$^{\circ}C$-250$^{\circ}C$.

  • PDF

Indium Tin Oxide (ITO) Coatings Fabricated Using Mixed ITO Sols

  • Cheong, Deock-Soo;Yun, Dong-Hun;Park, Sang-Hwan;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.708-712
    • /
    • 2009
  • ITO films were achieved by sintering at $500{\sim}550{^{\circ}C}$. This was possible by inducing a seeding effect on an ITO sol by producing crystalline ITO nanoparticles in situ during heat treatment. Two kinds of ITO sols (named ITO-A and ITO-B) were prepared at 2.0 wt% from indium acetate and tin(IV) chloride in different mixed solvents. The ITO-A sol showed a high degree of crystallinity of ITO without any detectable Sn$O_2$ on XRD at $350{^{\circ}C}$/1 h, but the ITO-B sol showed a small amount of Sn$O_2$ even after annealing at $600{^{\circ}C}$/1 h. The 10 wt% ITO-A//ITO-B showed the sheet resistance of 3600$\Omega$/□, while the ITO-B sol alone showed 5200 $\Omega$/□ by sintering at $550{^{\circ}C}$ for 30 min. Processing parameters were studied by TG/DSC, XRD, SEM, sheet resistance, and visible transmittance.

Influence of Thermal Annealing on the Microstructural Properties of Indium Tin Oxide Nanoparticles

  • Kim, Sung-Nam;Kim, Seung-Bin;Choi, Hyun-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.194-198
    • /
    • 2012
  • In this work, we studied the microstructural changes of ITO during the annealing process. ITO nanoparticles were prepared by the sol-gel method using indium tin hydroxide as the precursor. The prepared sample was investigated using TEM, powder XRD, XPS, DRIFT, and 2D correlation analysis. The O 1s XPS spectra suggested that the microstructural changes during the annealing process are closely correlated with the oxygen sites of the ITO nanoparticles. The temperature-dependent in situ DRIFT spectra suggested that In-OH in the terminal sites is firstly decomposed and, then, Sn-O-Sn is produced in the ITO nanoparticles during the thermal annealing process. Based on the 2D correlation analysis, we deduced the following sequence of events: 1483 (due to In-OH bending mode) ${\rightarrow}$ 2268, 2164 (due to In-OH stretching mode) ${\rightarrow}$ 1546 (due to overtones of Sn-O-Sn modes) ${\rightarrow}$ 1412 (due to overtones of Sn-O-Sn modes) $cm^{-1}$.