Kim, Gunju;Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
Journal of the Korean Ceramic Society
/
v.53
no.1
/
pp.110-115
/
2016
We prepared a working electrode (WE) coated with 0 ~ 50 nm-thick indium gallium zinc oxide(IGZO) by using RF sputtering to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) were used to analyze the microstructure and composition of the IGZO layer. UV-VIS-NIR spectroscopy was used to determine the transparency of the WE with IGZO layers. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with IGZO layer. From the results of the microstructural analysis, we were able to confirm the successful deposition of an amorphous IGZO layer with the expected thickness and composition. From the UV-VIS-NIR analysis, we were able to verify that the transparency decreased when the thickness of IGZO increased, while the transparency was over 90% for all thicknesses. The photovoltaic results show that the ECE became 4.30% with the IGZO layer compared to 3.93% without the IGZO layer. As the results show that electron mobility increased when an IGZO layer was coated on the $TiO_2$ layer, it is confirmed that the ECE of a DSSC can be enhanced by employing an appropriate thickness of IGZO on the $TiO_2$ layer.
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.245-245
/
2012
차세대 디스플레이로 각광받고 있는 AMOLED에 대한 관심이 높아짐에 따라 구동 소자의 연구가 활발히 이루어지고 있다. 산화물 반도체 박막 트랜지스터는 비정질 실리콘 박막 트랜지스터에 비해 100 $cm^2$/Vs 이하의 높은 이동도와 우수한 전기적 특성으로 AMOLED 구동 소자로서 학계에서 입증되어왔고, 현재 여러 기업에서 산화물 반도체를 이용한 박막 트랜지스터 제작 연구가 활발히 이루어지고 있다. 본 연구는 열처리 조건을 가변하여 제작한 산화물 반도체 박막 트랜지스터의 전기적 특성 분석을 목적으로 한다. 실리콘 기판에 oxidation 공정을 이용하여 SiO2 100 nm, DC스퍼터링을 이용하여 ITZO (Indium-Tin-Zinc Oxide) 산화물 반도체 박막 50 nm, 증착된 산화물 반도체 박막의 열처리 후, evaporation을 이용하여 source/drain 전극 Ag 150 nm 증착하여 박막 트랜지스터를 제작하였다. 12 sccm의 산소유량, 1시간의 열처리 시간에서 열처리 온도 $400^{\circ}C$, $200^{\circ}C$의 샘플은 각각 이동도 $29.52cm^2/V{\cdot}s$, $16.15cm^2/V{\cdot}s$, 문턱전압 2.61 V, 6.14 V, $S{\cdot}S$ 0.37 V/decade, 0.85 V/decade, on-off ratio 5.21 E+07, 1.10 E+07이었다. 30 sccm의 산소유량, 열처리 온도 $200^{\circ}C$에서 열처리 시간 1시간, 1시간 30분 샘플은 각각 이동도 $12.27cm^2/V{\cdot}s$, $10.15cm^2/V{\cdot}s$, 문턱전압 8.07 V, 4.21 V, $S{\cdot}S$ 0.89 V/decade, 0.71 V/decade, on-off ratio 4.31 E+06, 1.05 E+07이었다. 산화물 반도체의 열처리 효과 분석을 통하여 높은 열처리 온도, 적은 산소의 유량, 열처리 시간이 길수록 이동도, 문턱전압, $S{\cdot}S$의 산화물 박막 트랜지스터 소자의 전기적 특성이 개선되었다.
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.227-227
/
2012
본 연구에서는 RF스퍼터링법에 의하여 glass substrate에 In-Zn-Sn-O (IZTO)를 Zn 성분에 변화를 주면서 $350{\AA}$ 만큼 증착시키고, 1시간 동안 $350^{\circ}C$로 열처리 하였다. In:Zn:Sn의 성분 비율은 20:48:32 (IZTO1), 13:60:27 (IZTO2)이다. 박막의 전자적, 광학적 특성은 XPS (X-ray Photoelectron Spectroscopy), REELS(Reflection Electron Energy Loss Spectroscopy), UV-Spectrometer를 이용하여 연구하였고, 박막의 전기적 특성은 van der Pauw 법을 이용하여 측정하였다. XPS측정결과, IZTO박막은 In-O, Sn-O and Zn-O의 결합을 가진다. REELS를 이용해 Ep=1,500 eV에서의 밴드갭을 얻어보면, $350^{\circ}C$로 열처리 한 박막은 열처리를 하지 않은 것에 비해 밴드갭이 IZTO1는 3.36 eV에서 3.54 eV로, IZTO2는 3.15 eV에서 3.31 eV로 증가하였다. 반면에 Zn 함량이 증가할수록 밴드갭이 감소하는 것을 확인할 수 있었다. 이 값은 UV-Spectrometer를 이용한 광학적 밴드갭과 일치하였다. 또한 van der Pauw method를 이용한 전기적 특성 분석 결과, 열처리를 하기 전에 비하여 carrier concentration이 IZTO1는 $-4.4822{\times}10^{18}cm^{-3}$에서 $-2.714{\times}10^{19}cm^{-3}$로, IZTO2는 $-3.6931{\times}10^{17}cm^{-3}$에서 $-1.7679{\times}10^{19}cm^{-3}$로 증가하였다. 반면에 Resistivity는 IZTO1의 경우 $1.7122{\times}10^{-1}{\Omega}{\cdot}cm$에서 $5.5496{\times}10^{-3}{\Omega}{\cdot}cm$로, IZTO2는 $1.3290 {\Omega}{\cdot}cm$에서 $1.3395{\times}10^{-2}{\Omega}{\cdot}cm$로 감소하였다. 그리고 UV-Spectrometer를 이용한 광학적 특성을 측정해본 결과, 가시광선영역인 380~780 nm에서의 투과율이 83%이상으로 투명전자소자로의 응용이 가능하다는 것을 보여주었다.
JSTS:Journal of Semiconductor Technology and Science
/
v.16
no.2
/
pp.198-203
/
2016
We investigate the effects of magnesium (Mg) suppressor layer on the electrical performances and stabilities of amorphous indium-zinc-tin-oxide (a-ITZO) thin-film transistors (TFTs). Compared to the ITZO TFT without a Mg suppressor layer, the ITZO:Mg TFT exhibits slightly smaller field-effect mobility and much reduced subthreshold slope. The ITZO:Mg TFT shows improved electrical stabilities compared to the ITZO TFT under both positive-bias and negative-bias-illumination stresses. From the X-ray photoelectron spectroscopy O1s spectra with fitted curves for ITZO and ITZO:Mg films, we observe that Mg doping contributes to an enhancement of the oxygen bond without oxygen vacancy and a reduction of the oxygen bonds with oxygen vacancies. This result shows that the Mg can be an effective suppressor in a-ITZO TFTs.
JSTS:Journal of Semiconductor Technology and Science
/
v.17
no.2
/
pp.239-244
/
2017
We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.306.1-306.1
/
2016
ZnO semiconductor material has been widely utilized in various applications in semiconductor device technology owing to its unique electrical and optical features. It is a promising as solar cell material, because of its low cost, n-type conductivity and wide direct band gap. In this work ZnO/Si heterojunctions were fabricated by using pulsed laser deposition. Vacuum chamber was evacuated to a base pressure of approximately $2{\times}10^{-6}Torr$. ZnO thin films were grown on p-Si (100) substrate at oxygen partial pressure from 5mTorr to 40mTorr. Growth temperature of ZnO thin films was set to 773K. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnO target, whose density of laser energy was $10J/cm^2$. Thickness of all the thin films of ZnO was about 300nm. The optical property was characterized by photoluminescence and crystallinity of ZnO was analyzed by X-ray diffraction. For fabrication ZnO/Si heterojunction diodes, indium metal and Al grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. Finally, current-voltage characteristics of the ZnO/Si structure were studied by using Keithly 2600. Under Air Mass 1.5 Global solar simulator with an irradiation intensity of $100mW/cm^2$, the electrical properties of ZnO/Si heterojunction photovoltaic devices were analyzed.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.263-263
/
2016
최근 반도체 시장에서는 저비용으로 고성능 박막 트랜지스터(TFT)를 제작하기 위한 다양한 기술들이 연구되고 있다. 먼저, 재료적인 측면에서는 비정질 상태에서도 높은 이동도와 가시광선 영역에서 투명한 특성을 가지는 산화물 반도체가 기존의 비정질 실리콘이나 저온 폴리실리콘을 대체하여 차세대 디스플레이의 구동소자용 재료로 많은 주목받고 있다. 또한, 공정적인 측면에서는 기존의 진공장비를 이용하는 PVD나 CVD가 아닌 대기압 상태에서 이루어지는 용액 공정이 저비용 및 대면적화에 유리하고 프리커서의 제조와 박막의 증착이 간단하다는 장점을 가지기 때문에 활발한 연구가 이루어지고 있다. 특히 산화물 반도체 중에서도 indium-gallium-zinc oxide (IGZO)는 비교적 뛰어난 이동도와 안정성을 나타내기 때문에 많은 연구가 진행되고 있지만, 산화물 반도체 기반의 박막 트랜지스터가 가지는 문제점 중의 하나인 문턱전압의 불안정성으로 인하여 상용화에 어려움을 겪고 있다. 따라서, 본 연구에서는 기존의 산화물 반도체의 불안정한 문턱전압의 문제점을 해결하기 위해 마이크로웨이브 열처리를 적용하였다. 또한, 기존의 IGZO에서 suppressor 역할을 하는 값비싼 갈륨(Ga) 대신, 저렴한 지르코늄(Zr)과 하프늄(Hf)을 각각 적용시켜 용액 공정 기반의 Zr-In-Zn-O (ZIZO) 및 Hf-In-Zn-O (HIZO) TFT를 제작하여 시간에 따른 문턱 전압의 변화를 비교 및 분석하였다. TFT 소자는 p-Si 위에 습식산화를 통하여 100 nm 두께의 $SiO_2$가 열적으로 성장된 기판 위에 제작되었다. 표준 RCA 세정을 진행하여 표면의 오염 및 자연 산화막을 제거한 후, Ga, Zr, Hf 각각 suppressor로 사용한 IGZO, ZIZO, HIZO 프리커서를 이용하여 박막을 형성시켰다. 그 후 소스/드레인 전극 형성을 위해 e-beam evaporator를 이용하여 Ti/Al을 5/120 nm의 두께로 증착하였다. 마지막으로, 후속 열처리로써 마이크로웨이브와 퍼니스 열처리를 진행하였다. 그 결과, 기존의 퍼니스 열처리와 비교하여 마이크로웨이브 열처리된 IGZO, ZIZO 및 HIZO 박막 트랜지스터는 모두 뛰어난 안정성을 나타냄을 확인하였다. 결론적으로, 본 연구에서 제안된 마이크로웨이브 열처리된 용액공정 기반의 ZIZO와 HIZO 박막 트랜지스터는 추후 디스플레이 산업에서 IGZO 박막 트랜지스터를 대체할 수 있는 저비용 고성능 트랜지스터로 적용될 것으로 기대된다.
Park, Heejun;Nguyen, Cam Phu Thi;Raja, Jayapal;Jang, Kyungsoo;Jung, Junhee;Yi, Junsin
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.324-326
/
2016
In this study, we have investigated indium tin zinc oxide (ITZO) as an active channel for non-volatile memory (NVM) devices. The electrical and memory characteristics of NVM devices using multi-stack gate insulator SiO2/SiOx/SiOxNy (OOxOy) with Si-rich SiOx for charge storage layer were also reported. The transmittance of ITZO films reached over 85%. Besides, ITZO-based NVM devices showed good electrical properties such as high field effect mobility of 25.8 cm2/V.s, low threshold voltage of 0.75 V, low subthreshold slope of 0.23 V/dec and high on-off current ratio of $1.25{\times}107$. The transmission Fourier Transform Infrared spectroscopy of SiOx charge storage layer with the richest silicon content showed an assignment at peaks around 2000-2300 cm-1. It indicates that many silicon phases and defect sources exist in the matrix of the SiOx films. In addition, the characteristics of NVM device showed a retention exceeding 97% of threshold voltage shift after 104 s and greater than 94% after 10 years with low operating voltage of +11 V at only 1 ms programming duration time. Therefore, the NVM fabricated by high transparent ITZO active layer and OOxOy memory stack has been applied for the flexible memory system.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.262-262
/
2016
최근 고해상도 디스플레이가 주목받으면서 기존 비정질 실리콘(a-Si)을 대체할 수 있는 재료에 관한 연구가 활발히 진행되고 있다. a-Si의 경우 간단한 공정 과정, 적은 생산비용, 대면적화가 가능하다는 장점이 있지만 전자 이동도가 매우 낮은 단점이 있다. 반면, 산화물 반도체는 비정질 상태에서 전자 이동도가 높으며 큰 밴드갭을 가지고 있어 투명한 특성을 나타낼 뿐만 아니라, 저온공정이 가능하여 기판의 제한이 없는 장점을 가지고 있다. 대표적으로 가장 널리 연구되고 있는 산화물 반도체는 a-IGZO(amorphous indium-gallium-zinc oxide)이다. 그러나 InZnO(IZO) 기반의 산화물 반도체에서 carrier suppressor 역할을 하는 Ga(gallium)은 수요에 대한 공급이 원활하지 못하여 비싸다는 단점이 있다. 그러므로 경제적이면서 a-IGZO와 유사한 전기적 특성을 나타낼 수 있는 suppressor 물질이 필요하다. 따라서 본 연구에서는 IZO 기반의 산화물 반도체에서 Ga을 Hf(hafnium), Zr(zirconium), Si(silicon)으로 대체하여 용액증착(solution-deposition) 공정으로 각각의 채널층을 형성한 back-gate type의 박막 트랜지스터(thin-film transistor, TFT) 소자를 제작하였다. 용액증착 공정은 물질의 비율을 자유롭게 조절할 수 있고, 대기압의 조건에서도 공정이 가능하기 때문에 짧은 공정시간과 저비용의 장점이 있다. 제작된 소자는 p-type Si 위에 게이트 절연막으로 100 nm의 열산화막이 성장된 기판을 사용하였다. 표준 RCA 클리닝 후에 각 solution 물질을 spin coating 방식으로 증착하였다. 이후, photolithography, develop, wet etching의 과정을 거쳐 채널층 패턴을 형성하였다. 또한, 산화물 반도체의 전기적 특성을 향상시키기 위해서 후속 열처리 과정(post deposition annealing, PDA)은 필수적이다. CTA 방식은 높은 열처리 온도와 긴 열처리 시간의 단점이 있다. 따라서, 본 연구에서는 $100^{\circ}C$ 이하의 낮은 온도와 짧은 열처리 시간의 장점을 가지는 MWI (microwave irradiation)를 후속 열처리로 진행하였다. 그 결과, 각 물질로 구현된 소자들은 기존 a-IGZO와 비교하여 적은 양의 carrier suppressor로도 우수한 전기적 특성 및 안정성을 얻을 수 있었다. 따라서, Si, Hf, Zr 기반의 산화물 반도체는 기존의 Ga을 대체하여 저비용으로 디스플레이를 구현할 수 있는 IZO 기반 재료로 기대된다.
In this study, we fabricate amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with three different gate electrode materials of Al, Mo and Pt on plastic substrates and investigate their electrical characteristics. Compared to an a-IGZO TFT with Al gate electrode, the threshold voltage of an a-IGZO TFT with a Pt electrode decreases from -4.2 to -0.3 V. and the filed-effect mobility is improved from 15.8 to $22.1cm^2/V{\cdot}s$. The threshold voltage shift of the TFT is affected by the difference between the work function of the gate electrode and the Fermi energy of the channel layer. Moreover, the Pt gate electrode is considered to be the suitable material in terms of the electrical characteristics of the TFT. In addition, an description on an a-IGZO TFT with a Mo electrode will be given here.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.