• Title/Summary/Keyword: Indium tin oxide (ITO) electrode

Search Result 209, Processing Time 0.027 seconds

Electrochemical Properties of Indium Tin Oxide Electrodes Immersed in a Cell Culture Medium with Fetal Bovine Serum (Fetal Bovine Serum을 포함한 세포 배양액에 담근 Indium Tin Oxide 전극 계면의 전기화학적 특성)

  • Choi, Won Seok;Cho, Sungbo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • For the biocompatibility test of implantable devices or for the sensitivity evaluation of biomedical sensors, it is required to understand the mechanism of the protein adsorption and the interaction between the adsorbed proteins and cells. In this study, the adsorption of proteins in a cell culture medium with fetal bovine serum onto an indium tin-oxide electrode was characterized by using linear sweep voltammetry and impedance spectroscopy. We immersed the fabricated ITO electrodes in the culture medium for 30, 60, or 90 min, and then measured the electrochemical properties of electrodes with 10 mM $Fe(CN){_6}^{3-/4-}$ and 0.1 M KCl electrolyte. With an increase of contacting time, the anodic peak current was decreased and the charge transfer resistance was increased. However, both parameters were recovered to the values before contact with the medium after the treatment of Trypsin/Ethylenediaminetetraacetic acid hydrolyzing proteins.

A Study of Characteristic based on Working Pressure of ITO Electrode for Display (디스플레이용 ITO 전극의 동작 압력에 따른 특성 연구)

  • Kim, Hae-Mun;Park, Hyung-Jun
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.392-397
    • /
    • 2016
  • In this paper, Characteristics of the ITO thin film deposited were analyzed using DC magnetron sputtering in order to investigate the deposition conditions of ITO thin film for transparent electrode. The experiment conditions were atmospheric pressure from 1 to 3[mTorr] with 1 [mTorr] step, bias electric voltage ranged from 260[V] to 330[V] with 10[V] step. The transmittance, refractive index and surface and cross-sectional shape of the deposited thin film were measured with an UV.-VIS. spectrophotometer, ellipsometer and SEM. Such condition as 1~2[mTorr] and near 300[V] voltage the transmittance was over 90[%] and the refractive index more than 2. Therefore, it was confirmed that the appropriate condition for making a highly transparent conductive electrode.

Improvement of High-Temperature Performance of LiMn2O4 Cathode by Surface Coating (표면코팅을 통한 LiMn2O4 양극의 고온성능 개선)

  • Lee, Gil-Won;Lee, Jong-Hwa;Ryu, Ji-Heon;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2009
  • An indium-tin oxide (ITO) coated spinel manganese oxide (${LiMn_2}{O_4}$, LMO) is prepared and its high-temperature ($55^{\circ}C$) cycle performance and rate capability are examined. A severe electrolyte decomposition and film deposition is observed on the un-coated ${LiMn_2}{O_4}$ cathode, which leads to a significant electrode polarization and capacity fading. Such an electrode polarization is, however, greatly reduced for the ITO-coated (> 2 mol%) LMO cathode, which leads to an improved cycle performance. This can be rationalized by a suppression of electrolyte decomposition, which is in turn indebted to a decrease in the direct contact area between LMO and electrolyte. The suppression of film deposition on the ITO-coated LMO cathode is confirmed by infra-red spectroscopy. The rate capability is also improved by the surface coating, which may be resulted from a suppression of resistive film deposition and high electric conductivity of ITO itself.

Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:AI / ITO TCO layers (ZnO:Al 과 ITO 투명전도막을 이용한 플랙시블 타입 DSCs변환효율 특성)

  • Kim, Ji-Hoon;Kwak, Dong-Joo;Sung, Youl-Moon;Kim, Tae-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.177-179
    • /
    • 2009
  • In order to investigate the possible application of ZnO films as a transparent conducting oxide (TCO) electrode, ZnO:Al films were prepared by RF magnetron sputtering method. The effects of surface treatment and doping concentration on the structural and electrical properties of ZnO films were mainly studied experimentally. Five-inch PDP cells using either a ZnO:Al or indium tin oxide (ITO) electrode were also fabricated separately under the same manufacturing conditions. The luminous properties of both the transparent conducting oxide electrode were measured and compared with each other. By doping the ZnO target with 2 wt% of Al2O3, the film deposited at a chemical surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. And DBD surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. Although the luminance and luminous efficiency of the transparent conducting oxide electrode using ZnO:AI are lower than those of the cell with the ITO electrode by about 10%, these values are sufficient enough to be considered for the normal operation of TCO.

  • PDF

Effect of Thermal Treatment on the Electrocatalytic Activities and Surface Roughness of ITO Electrodes

  • Choi, Moon-Jeong;Jo, Kyung-Mi;Yang, Hae-Sik
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • The electrocatalytic activities and surface roughness of indium-tin-oxide (ITO) electrodes have been investigated after thermal treatment at 100, 150, or $200^{\circ}C$ for 30 min, 2 h, or 8 h. To check electrocatalytic activities, the electrochemical behavior of four electroactive species (p-hydroquinone, $Ru(NH_3){_6}^{3+}$, ferrocenemethanol, and $Fe(CN){_6}^{4-}$) has been measured. The electron transfer rate for p-hydroquinone oxidation and ferrocenemethanol oxidation increases with increasing the incubation temperature and the incubation period of time, but the rate for $Ru(NH_3){_6}^{3+}$ is similar irrespective of the incubation temperature and period because $Ru(NH_3){_6}^{3+}$ undergoes a fast outer-sphere reaction. Overall, the electrocatalytic activities of ITO electrodes increase with increasing the incubation temperature and period. The surface roughness of ITO electrodes increases with increasing the incubation temperature, and the thermal treatment generates many towering pillars as high as several tens of nanometer.

Electro-optical characterization of heterostructure organic electroluminescent devices (2층 구조 유기 박막 EL 소자의 전기-광학적특성)

  • Kim, Min-Soo;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.10-15
    • /
    • 1995
  • Organic thin film electroluminescent(EL) cells were fabricated. Their output characteristics and luminance versus voltage characteristics were measured with different work function metal electrodes. The EL structure was Indium-Tin-Oxide(ITO)/hole transport layer/emission layer(electron transport layer)/metal electrode. PMMA+TPD(0.5 wt%), MC homopolymer+TPD(0.005 wt%) and (MC/MMA) copolymer+TPD(0.005 wt%) were used as hole transport layer. Ca, Mg, Mg:Ag(10:l) and Al were used as metal electrode. I-V output showed exponential feature, and the threshold voltage of 5 volts and the luminance of over 700 $Cd/m^{2}$ at 10 volts were observed.

  • PDF

Buffer Effect of Copper Phthalocyanine(CuPC) (카퍼 프탈로시아닌의 완충효과)

  • Kim, Jung-Hyun;Shin, Dong-Muyng;Shon, Byoung-Choung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.307-311
    • /
    • 1999
  • Interfacial properties of electrode and organic thin layer is one of the most important factor in performing a Light Emitting Diodes(LED). Phthalocyanine copper was used as a buffer layer to improve interface characteristic, so that device efficiency was improved. In this study, LEDs were fabricated as like structures of Indium-Tin-Oxide (ITO) / N,N' -Diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) / 8-Hydroxyquinoline aluminum(Alq) / Aluminum(Al) and Indium-Tin-Oxide(ITO) / N,N'-Diphenyl-N,N' -di(m-tolyl)-benzidine(TPD) / 2-(4-Biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole(PBD) / Aluminum(Al). In these devices, CuPC was layered at electrode/organic layer interface. As position is changing and thickness is changing, devices showed characteristic luminescence efficiency and luminescence inensity respectively. We showed in this study that luminescence efficiency was improved with CuPC layer in LEDs. The efficiency of device with layer CuPC is higher than that of 2 layer CuPC. However, the luminescence of 2 layer CuPC device got higher value.

Evaluations of Life Cycle Assessment on Indium-Tin-Oxide Electrochemical Recycling Process (디스플레이 투명전극용 인듐-주석-산화물의 전기화학적 재활용 공정에 관한 전과정 평가)

  • Kim, Raymund K.I.;Lee, Na-Ri;Lee, Soo-Sun;Lee, Young-Sang;Hong, Sung-Jei;Son, Young-Keun;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.388-392
    • /
    • 2013
  • Iindium-tin-oxide (ITO) material was had to use in display application as transparent electrode. However it would be problems comes up, the depletion of indium, tin and energy consumption of production process. Therefore recently trend was demanded alternative ITO material and recycling/reused ITO. In this conditions, the environmental impact have to express correct value about recycling/reused ITO process. The life cycle assessment was valuable method in this process. Thus first step was carried out separating in/out put (material) sources and then, exactive data base (DB) was applied. The result of environment impact was calculated by affect categories and recycling rate was set to 34% (This value was measured in previous project). The rate (g) of ITO material was calculated by chemical equivalent. In result, environmental impact were revealed acidification potential and abiotic depletion and if do not recycle/reuse ITO, $ 476 per 1 ton waste in land.

Optimization of Amorphous Indium Gallium Zinc Oxide Thin Film for Transparent Thin Film Transistor Applications

  • Shin, Han Jae;Lee, Dong Ic;Yeom, Se-Hyuk;Seo, Chang Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.352.1-352.1
    • /
    • 2014
  • Indium Tin Oxide (ITO) films are the most extensively studied and commonly used as ones of TCO films. The ITO films having a high electric conductivity and high transparency are easily fabricated on glass substrate at a substrate temperature over $250^{\circ}C$. However, glass substrates are somewhat heavy and brittle, whereas plastic substrates are lightweight, unbreakable, and so on. For these reasons, it has been recently suggested to use plastic substrates for flexible display application instead of glass. Many reaearchers have tried to produce high quality thin films at rood temperatures by using several methods. Therefore, amorphous ITO films excluding thermal process exhibit a decrease in electrical conductivity and optical transparency with time and a very poor chemical stability. However the amorphous Indium Gallium Zinc Oxide (IGZO) offers several advantages. For typical instance, unlike either crystalline or amorphous ITO, same and higher than a-IGZO resistivity is found when no reactive oxygen is added to the sputter chamber, this greatly simplifies the deposition. We reported on the characteristics of a-IGZO thin films were fabricated by RF-magnetron sputtering method on the PEN substrate at room temperature using 3inch sputtering targets different rate of Zn. The homogeneous and stable targets were prepared by calcine and sintering process. Furthermore, two types of IGZO TFT design, a- IGZO source/drain material in TFT and the other a- ITO source/drain material, have been fabricated for comparison with each other. The experimental results reveal that the a- IGZO source/drain electrode in IGZO TFT is shown to be superior TFT performances, compared with a- ITO source/drain electrode in IGZO TFT.

  • PDF

Current Status of Low-temperature TCO Electrode for Solar-cell Application: A Short Review (고효율 태양전지 적용을 위한 저온 투명전극 소재 연구현황 리뷰)

  • Park, Hyeongsik;Kim, Youngkuk;Oh, Donghyun;Pham, Duy Phong;Song, Jaechun;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Transparent conducting oxide (TCO) films have been widely used in optoelectronic devices, such as OLEDs, TFTs, and solar cells. However, thin films of indium tin oxide (ITO) have few disadvantages pertaining to process parameters such as substrate temperature and sputtering power. In this study, we investigated the requirements for using TCO films in silicon-based solar cells and the best alternative TCO materials to improve their efficiency. Moreover, we discussed the current status of high-efficiency solar cells using low-temperature TCO films such as indium zinc oxide and Zr-doped indium oxide.