• Title/Summary/Keyword: Indium oxide

Search Result 1,235, Processing Time 0.03 seconds

Effect of annealing on the properties of zinc doped indium oxide(IZO) films (후열처리에 따른 Indium Zinc Oxide(IZO) 박막의 특성변화)

  • Kim, Dae-Hyun;Kim, Sang-Mo;Choi, Hyung-Wook;Kim, Kyung-Hwan;Rim, You-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.260-261
    • /
    • 2008
  • In this study, we investigated the properties of Indium Zinc Oxide (IZO) films prepared in facing targets sputtering (FTS) system at room temperature as function of oxygen contents. As as-deposited films were rapidly thermal annealing on air atmosphere of $400^{\circ}C$ for 30s. As a result, the transmittance of IZO films increased with increasing oxygen flow in the visible range. After rapidly thermal annealing to films, the optical properties of films improved than films deposited at R.T, but the electrical properties decreased. Before RTA treatment, the lowest resistivity IZO is $5.4\times10^{-4}[\Omega{\cdot}cm]$ at oxygen gas flow. But, after RTA treatment, IZO films have the value of lowest resistivity at the lower oxygen gas ratio in compare with before RTA treatment. The resistivity of IZO films is $7.29\times10^{-4}[\Omega{\cdot}cm]$ at pure argon atmosphere.

  • PDF

Indium Tin Oxide-Free Large-Area Flexible Organic Light-Emitting Diodes Utilizing Highly Conductive poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) Anode Fabricated by the Knife Coating Method (나이프 코팅 법으로 제작한 ITO-Free 고전도성 PEDOT:PSS 양극 대면적 유연 OLED 소자 제작에 관한 연구)

  • Seok, JaeYoung;Lee, Jaehak;Yang, MinYang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper reports solution-processed, high-efficiency organic light-emitting diodes (OLEDs) fabricated by a knife coating method under ambient air conditions. In addition, indium tin oxide (ITO), traditionally used as the anode, was substituted by optimizing the conductivity enhancement treatment of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films on a polyethylene terephthalate (PET) substrate. The transmittance and sheet resistance of the optimized PEDOT:PSS anode were 83.4% and $27.8{\Omega}/sq$., respectively. The root mean square surface roughness of the PEDOT:PSS anode, measured by atomic force microscopy, was only 2.95 nm. The optimized OLED device showed a maximum current efficiency and maximum luminous density of 5.44 cd/A and $8,356cd/m^2$, respectively. As a result, the OLEDs created using the PEDOT:PSS anode possessed highly comparable characteristics to those created using ITO anodes.

A Study on the Properties of Indium-Tin-Oxide(ITO) Films Deposited by DC magnetron sputtering method (DC magnetron sputtering 방법으로 형성한 Indium-Tin-Oxide(ITO) 박막의 특성 연구)

  • An, Myung-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.473-478
    • /
    • 2006
  • High quality indium tin oxide (ITO) thin films have been prepared by DC magnetron sputtering technique. By controlling the deposition parameters such as substrate temperature and oxygen flow rate, we were able to minimize the negative ion damage during the deposition. Films pr데ared under such conditions were found to posses an excel]ent electrical resistivity of $1.6\times10^{-4}{\Omega}cm$ and also found to have a optical transmission above 90%. We also observe that, increasing the oxygen now rate above 4 sccm leads to an increase in electrical resistivity of the films while the transmission was found to saturate with the increase in the oxygen gas flow.

Electrochemical Properties of Indium Tin Oxide Electrodes Immersed in a Cell Culture Medium with Fetal Bovine Serum (Fetal Bovine Serum을 포함한 세포 배양액에 담근 Indium Tin Oxide 전극 계면의 전기화학적 특성)

  • Choi, Won Seok;Cho, Sungbo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • For the biocompatibility test of implantable devices or for the sensitivity evaluation of biomedical sensors, it is required to understand the mechanism of the protein adsorption and the interaction between the adsorbed proteins and cells. In this study, the adsorption of proteins in a cell culture medium with fetal bovine serum onto an indium tin-oxide electrode was characterized by using linear sweep voltammetry and impedance spectroscopy. We immersed the fabricated ITO electrodes in the culture medium for 30, 60, or 90 min, and then measured the electrochemical properties of electrodes with 10 mM $Fe(CN){_6}^{3-/4-}$ and 0.1 M KCl electrolyte. With an increase of contacting time, the anodic peak current was decreased and the charge transfer resistance was increased. However, both parameters were recovered to the values before contact with the medium after the treatment of Trypsin/Ethylenediaminetetraacetic acid hydrolyzing proteins.

Electrical, Optical and Structural Properties of Indium Zinc Oxide Top Cathode Grown by Box Cathode Sputtering for Top-emitting OLEDs (박스 캐소드 스퍼터로 성장시킨 전면 발광 OLED용 상부 InZnO 캐소드 박막의 전기적, 광학적, 구조적 특성 연구)

  • Bae Jung-Hyeok;Moon Jong-Min;Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.442-449
    • /
    • 2006
  • Electrical, optical, and structural properties of indium zinc oxide (IZO) films grown by a box cathode sputtering (BCS) were investigated as a function of oxygen flow ratio. A sheet resistance of $42.6{\Omega}/{\Box}$, average transmittance above 88% in visible range, and root mean spare roughness of $2.7{\AA}$ were obtained even in the IZO layers grown at room temperature. In addition, it is shown that electrical characteristics of the top-emitting organic light emitting diodes (TOLEDs) with the BCS grown-IZO top cathode layer is better than that of TOLEDs with DC sputter grown IZO top cathode, due to absence of plasma damage effect. Furthermore the effects of oxygen flow ratio in IZO films are investigated, based on x-ray photoelectron spectroscopy (XPS), ultra violet/visible (UV/VIS) spectro-meter, scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis results.

Indium Tin Oxide Thin Films Grown on Polyethersulphone (PES) Substrates by Pulsed-Laser Deposition for Use in Organic Light-Emitting Diodes

  • Kim, Kyung-Hyun;Park, Nae-Man;Kim, Tae-Youb;Cho, Kwan-Sik;Sung, Gun-Yong;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.405-410
    • /
    • 2005
  • High quality indium tin oxide (ITO) thin films were grown by pulse laser deposition (PLD) on flexible polyethersulphone (PES) substrates. The electrical, optical, and surface morphological properties of these films were examined as a function of substrate temperature and oxygen pressure. ITO thin films, deposited by PLD on a PES substrate at room temperature and an oxygen pressure of 15 mTorr, have a low electrical resistivity of $2.9{\times}10^{-4}{\Omega}cm$ and a high optical transmittance of 84 % in the visible range. They were used as the anode in organic light-emitting diodes (OLEDs). The maximum electro luminescence (EL) and current density at 100 $cd/m^2$ were 2500 $cd/m^{2}$ and 2 $mA/m^{2}$, respectively, and the external quantum efficiency of the OLEDs was found to be 2.0 %.

  • PDF

Effect of Nd:YVO4 Laser Beam Direction on Direct Patterning of Indium Tin Oxide Film

  • Ryu, Hyungseok;Lee, Dong Hyun;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.72-76
    • /
    • 2019
  • A Q-switched diode-pumped neodymium-doped yttrium vanadate (YVO4, λ =1064nm) laser was used for the direct patterning of indium tin oxide (ITO) films on glass substrate. During the laser direct patterning, the laser beam was incident on the two different directions of glass substrate and the laser ablated patterns were compared and analyzed. At a low scanning speed of laser beam, the larger laser etched lines were obtained by laser beam incident in reverse side of glass substrate. On the contrary, at a higher scanning speed, the larger etched pattern sizes were found in case of the beam incidence from front side of glass substrate. Furthermore, it was impossible to find no ablated patterns in some laser beam conditions for the laser beam from reverse side at a much higher scanning speed and repetition rate of laser beam. The laser beam is expected to be transferred and scattered through the glass substrate and the laser beam energy is thought to be also dispersed and much more influenced by the overlapping of each laser beam spot.

Effects of Nitrogen Additive Gas on the Property of Active Layer and the Device Characteristic in Indium-zinc-oxide thin Film Transistors (산화인듐아연 박막 트랜지스터에서 질소 첨가가스가 활성층의 물성 및 소자의 특성에 미치는 영향)

  • Lee, Sang-Hyuk;Bang, Jung-Hwan;Kim, Won;Uhm, Hyun-Seok;Park, Jin-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2016-2020
    • /
    • 2010
  • Indium-zinc-oxide (IZO) films were deposited at room temperature via RF sputtering with varying the flow rate of additive nitrogen gas ($N_2$). Thin film transistors (TFTs) with an inverted staggered configuration were fabricated by employing the various IZO films, such as $N_2$-added and pure (i.e., w/o $N_2$-added), as active channel layers. For all the deposited IZO films, effects of additive $N_2$ gas on their deposition rates, electrical resistivities, optical transmittances and bandgaps, and chemical structures were extensively investigated. Transfer characteristics of the IZO-based TFTs were measured and characterized in terms of the flow rate of additive $N_2$ gas. The experimental results indicated that the transistor action occurred when the $N_2$-added (with $N_2$ flow rate of 0.4-1.0 sccm) IZO films were used as the active layer, in contrast to the case of using the pure IZO film.

Temperature sensor without reference resistor by indium tin oxide and molybdenum (인듐틴옥사이드와 몰리브데늄을 이용한 외부 기준 저항이 필요 없는 온도센서)

  • Jeon, Ho-Sik;Bae, Byung-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.483-489
    • /
    • 2010
  • Display quality depends on panel temperatures. To compensate it, temperature sensor was integrated on the panel. The conventional temperature sensor integrated on the panel needs external reference resistor. Since the resistance of external resistor can vary according to the variation of the environment temperature, the conventional temperature sensor can make error in temperature sensing. The environmental temperatures can change by the back light unit, driving circuits or chips. In this paper, we proposed a integrated temperature sensor on display panel which does not need external reference resister. Instead of external reference resistor, we used two materials which have different temperature coefficient in resistivity. They are connected serially and the output voltage was measured at the point of connection with the applied voltage to both ends. The proposed sensor was fabricated with indium tin oxide(ITO), and Mo metal electrode temperature sensor which were connected serially. We verified the temperature senor by the measurements of sensitivity, lineality, hysteresis, repeatability, stability, and accuracy.

Fabrication and characterization of Indium-Tin Oxide thin film on the commercial glass substrate (일반 현미경용 유리에 증착시킨 Indium-Tin Oxide 박막의 제작 및 특성)

  • 김여중;조길호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • Indium-Tin Oxide (ITO) thin films were deposited on the commercial glass substrate by rf-magnetron sputtering. The ITO films with the thickness of 2,000~2,400 $\AA$ were prepared by changing the oxygen partial pressures of 2, 3, and 5%, as well as by changing the substrate temperature of $300^{\circ}C$ and $500^{\circ}C$. spectrophotometer, XRD, SEM, AFM, 4-point probe and Hall effect system were employed to characterize the ITO films. The optimum deposition conditions were the substrate temperature of $500^{\circ}C$ and oxygen partial pressure of 2-3%. At theses conditions, the ITO film showed the transmittance of 91%, the resistivity of $5.4\times10^{-3}\Omega$cm, the carrier concentration of $1.0\times10^{19}\textrm{cm}^{-3}$, and the carrier mobility of 150$\textrm{cm}^2$/Vsec. In XRD spectra, the (222) and (400) $In_2O_3$ planes were dominant under the optimum deposition conditions When the substrate was cleaned only by the method of ultrasonic cleaning without both pre-annealing and chemical treatment of the substrate, the ITO film exhibited the transmittance of 86%, the carrier concentration of $5.4\times10^{19}\textrm{cm}^{-3}$ and the mobility of 24$\textrm{cm}^2$/Vsec.

  • PDF