• Title/Summary/Keyword: Indirect Torque Control

Search Result 76, Processing Time 0.024 seconds

Speed Control of Induction Motors Using Load Torque Feedforward Control (부하토크 피드포워드 제어를 이용한 유도전동기의 속도제어)

  • 서영수;성대용;임영배
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 1998
  • This paper proposed a speed control system for induction motors robust to variations in torque and parameters by feedforward compensating the current portion of load torque, adding a load torque observer to the conventional PI controller in the indirect vector controlled induction motor system. Computer simulations and exeperimental works using the proposed control confirm that the transient response for the variation of the reference speed and load torque becomes improved, compared with the conventional PI controled method.

Torque Predictive Control for Permanent Magnet Synchronous Motor Drives Using Indirect Matrix Converter

  • Bak, Yeongsu;Jang, Yun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1536-1543
    • /
    • 2019
  • This paper presents an improved torque predictive control (TPC) for permanent magnet synchronous motors (PMSMs) using an indirect matrix converter (IMC). The IMC has characteristics such as a high power density and sinusoidal waveforms of the input-output currents. Additionally, this configuration does not have any DC-link capacitors. Due to these advantages of the IMC, it is used in various application field such as electric vehicles and railway cars. Recently, research on various torque control methods for PMSM drives using an IMC is being actively pursued. In this paper, an improved TPC method for PMSM drives using an IMC is proposed. In the improved TPC method, the magnitudes of the voltage vectors applied to control the torque and flux of the PMSM are adjusted depending on the PMSM torque control such as the steady state and transient response. Therefore, it is able to reduce the ripples of the output current and torque in the low-speed and high-speed load ranges. Additionally, the improved TPC can improve the dynamic torque response when compared with the conventional TPC. The effectiveness of the improved TPC method is verified by experimental results.

Imposed Weighting Factor Optimization Method for Torque Ripple Reduction of IM Fed by Indirect Matrix Converter with Predictive Control Algorithm

  • Uddin, Muslem;Mekhilef, Saad;Rivera, Marco;Rodriguez, Jose
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.227-242
    • /
    • 2015
  • This paper proposes a weighting factor optimization method in predictive control algorithm for torque ripple reduction in an induction motor fed by an indirect matrix converter (IMC). In this paper, the torque ripple behavior is analyzed to validate the proposed weighting factor optimization method in the predictive control platform and shows the effectiveness of the system. Therefore, an optimization method is adopted here to calculate the optimum weighting factor corresponds to minimum torque ripple and is compared with the results of conventional weighting factor based predictive control algorithm. The predictive control algorithm selects the optimum switching state that minimizes a cost function based on optimized weighting factor to actuate the indirect matrix converter. The conventional and introduced weighting factor optimization method in predictive control algorithm are validated through simulations and experimental validation in DS1104 R&D controller platform and show the potential control, tracking of variables with their respective references and consequently reduces the torque ripple.

A robust indirect vector control for the rotor time constant variation of induction motors (유도전동기 회전자 시정수 변동에 강인한 간접 벡터제어)

  • 강현수;조순봉;현동석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.365-373
    • /
    • 1996
  • This paper presents the effects of rotor time constant variation and the on-line tuning algorithm of the rotor time constant. If the value of the rotor time constant is set incorrectly, the IFOC (Indirect Field Oriented Control)scheme exhibits deteriorated performance according to the wrong slip command. These variation effects of the rotor time constant are caused by the slip calculator where it is known that the rotor time constant play an important role in the aligned rotor flux. Using the two torque angles (stationary torque angle, rotating torque angle), the variation of the rotor time constant is identified, and the rotor time constant of the controller is tuned to the proper value of the machine. As the result, with the proposed algorithm, the dynamics of the deteriorated IFOC system, where the rotor time constant is varied, is improved. For the purpose of the validity of this proposed algorithm, the computer simulations and the experiments have been performed and the explanation of the results is presented. (author). refs., figs., tab.

  • PDF

Design of neuro-fuzzy for robust control of induction motor (유도전동기의 강인 제어를 위한 뉴로-퍼지 설계)

  • 송윤재;강두영;김형권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.454-457
    • /
    • 2004
  • In this paper, control method proposed for effective speed control of the induction motor indirect vector control. For the induction motor drive, indirect vector control scheme that controls torque current and flux current of the stator current independently so that it can have improved dynamics. Also, neuro-fuzzy algorithm employed for torque current control in order to optimal speed control The proposed neuro-fuzzy algorithm can be applied to the precise speed control of an induction motor drive system or the field of any other power systems.

  • PDF

Speed Control of Induction Motor Using Load Torque Feedforward Control (부하토크 피드포워드 제어를 이용한 유도전동기의 속도제어)

  • 서영수;임영배;김영춘;성대용;김종균
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.152-155
    • /
    • 1997
  • This thesis proposed a speed control system for induction motors robust to variations in torque and parameters by feedforward compensating the current portion of load torque, adding a load torque observer to the conventional PI controller in the indirect vector controlled induction motor system. In conclusion, this thesis demonstrate the improved transient characteristic to variations in reference speed and load torque, compared to the conventional PI control method, by means of the feedworward control of the estimated load torque.

  • PDF

A Study on the Design of an Indirect Shift Transient Torque Controller for an Automatic Power Transmission System (자동변속장치의 간접식 과도토오크 제어기 설계에 관한 연구)

  • Jung, H.S.;Lee, K.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.110-120
    • /
    • 1994
  • Due to the increasing demands in comfortable drivability, most motor companies are developing their own unique shift controller to suppress the shift shock induced by gear change. For a typical automatic transmission system, the dynamic constraints of friction clutch was clarified for efficient program development and major factors effecting the shift transient was confirmed by simulation study. The MIMO LQG/LTR controller was designed to control the turbine and corresponding gear speed. By establishing the control strategy recalling transient response during shift the speed controller mentioned above was used as an indirect torque controller. Consequently a new concept for a systematic design method of shift controller applicable to wide-varying systems was suggested which is time efficient and cost efficient saving a lot of experimental study.

  • PDF

Torque Control Strategy for High Performance SR Drive

  • Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.538-545
    • /
    • 2008
  • This paper attempts to summarize torque control strategy for high performance SR drive. There are primarily two strategies for torque control. One method is direct torque control, which uses the simple control scheme and hysteresis controller to reduce the torque ripple. Another method is indirect torque control, which uses the complicated algorithms or simple distribution function to distribute each phase torque and obtain current command. The current controller is used to control phase torque by a given current command. In order to compare these two strategies of torque control, five torque control methods are introduced. The advantages and disadvantages of each method are presented. At last, they are verified by some simulations and experimental results.

Study for Sensorless Torque Control Scheme of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 센서리스 토오크제어에 관한 연구)

  • 김윤호;이장선
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.212-216
    • /
    • 1998
  • For a Switched Reluctance Motor(SRM) drive, the important things are 1) reducing torque ripple, 2) improving efficiency, 3) sensorless speed control, 4) accurate position. The position information impotant for the efficiency and smoothness drives. Since SRMs characteristics are nonlinear. It is difficult to estimated phase current in saturation region. This paper describes a method for indirect sensing of the rotor position in SRM which use both voltage and current. The method obtains rotor position by using unconducting phase. The information about the rotor position is achieved by differentiating the unconducting phase current or the voltage gradient. And then, this paper presents a torque control with indirect rotor position detection methods. This torque control is achieved by developing a detailed nonlinear model of the motor.

  • PDF

PID Controller Tuning using Co-Efficient Diagram method for Indirect Vector Controlled Drive

  • Durgasukumar, G.;Rama Subba Redddy, T.;Pakkiraiah, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1821-1834
    • /
    • 2017
  • Medium voltage control applications due to obtain better output voltage and reduced electro-magnetic interference multi level inverter is used. In closed loop control with inverter, the PI controller does not operate satisfactorily when the operating point changes. This paper presents the performance of Co-Efficient diagram PI controller based indirect vector controlled induction motor drive fed from three-level inverter under different operating conditions (dynamic and steady state). The proposed Co-Efficient diagram PI controller based three level inverter significantly reduces the torque ripple compared to that of conventional PI controller. The performance of the indirect vector controlled induction motor drive has been simulated at different operating conditions. For three-level inverter control, a simplified space vector modulation technique is implemented, which reduces the coordinate transformations complications in the algorithms. The performance parameters, torque ripple contents and THD of induction motor drive with three-level inverter is compared under different operating conditions using CDM-PI and conventional PI controllers.