• 제목/요약/키워드: Indirect Cooling

검색결과 70건 처리시간 0.021초

연 최대 냉방부하의 간접추정 방법론에 관한 연구 (A Study on Indirect Estimating Methods for Yearly Maximum Cooling Load)

  • 양문희
    • 산업공학
    • /
    • 제16권1호
    • /
    • pp.16-26
    • /
    • 2003
  • In Korea, cooling power load, which occupies about 20% of peak load in 2000 and fluctuates depending on the popular usage of air conditioning systems, has been recently the focus of the load management. The first work of KEPCO (Korea Electric Power Corporation) to regulate cooling load as low as possible was to estimate its approximate scale and to develop the indirect methods to estimate it from the available time series data for the average hourly loads. However, KEPCO would like to have their methods improved both theoretically and practically. In this paper, we analyze their current indirect methods and detect their faults to design better indirect estimation methods. Under one of the assumptions of "no cooling load in April or May", the linear relationship between basic loads and GDP's, and the normalized seasonal factors of the Winters' multiplicative seasonal model, we provide ten indirect estimation methods in total and suggest the estimated cooling load(1988-1999) based on our various indirect methods.

증발수 유량이 간접 증발식 냉각기 성능에 미치는 영향 (Effects of Evaporation Water Flow Rate on the Performance of an Indirect Evaporative Cooler)

  • 추현선;이관수;이대영
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.714-721
    • /
    • 2006
  • In evaporative cooling applications, the evaporation water is supplied usually sufficiently larger than the amount evaporated to enlarge contact surface between the water and the air. Especially in indirect evaporative coolers, however, if the evaporation water flow rate is excessively large, the evaporative cooling effect is not used for heat absorption from the hot fluid but spent to the sensible cooling of the evaporation water itself. This would result in a decrease in the cooling performance of the indirect evaporative cooler. In this study, the effects of the evaporation water flow rate on the cooling performance are investigated theoretically. The cooling process in an indirect evaporative cooler is modeled into a set of linear differential equations and solved to obtain the exact solutions to the temperatures of the hot fluid, the moist air, and the evaporation water. Based on the exact solutions, it is analyzed how much the cooling performance is affected by the evaporation water flow rate. The results show that the decrease in the cooling effectiveness is substantial even for a small flow rate of the evaporation water and the relative decrease is more serious for a high-performance evaporative cooler.

간접냉각시스템을 이용한 인코넬 718소재의 가공성 평가 (Machinability Evaluation of Inconel 718 Material Using Indirect Cooling System)

  • 김진형;이여울;박성환;이동진;강명창
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.96-101
    • /
    • 2019
  • This paper presents a machinability evaluation of Inconel 718 material when using a new uniform-temperature indirect cooling method that incorporates constant-pressure liquid nitrogen (LN2). The flank wear of a TiAlN coated tool used with this indirect cooling system was much lower than that of the tool used with dry machining under all machining conditions. Also, the surface roughness resulting from machining with this indirect method was far less than that of a dry machined surface after the same cutting time. Reduced heat generation and uniform temperature in turning operations play important roles in tool life and surface quality.

간접냉각방식을 이용한 열원이 부착된 채널내의 열전달 촉진에 관한 연구 (The study on heat transfer enhancement using indirect cooling system in the channel with heat source)

  • 김광추;박만흥;윤준규
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.321-331
    • /
    • 1999
  • A numerical study is carried out for increasing heat removal using indirect cooling system. Computation is performed for nine cases as variation of flow condition in the lower channel. As the result of this study, water is more effective than air at the same pressure loss in spite of the lower inlet velocity. In channel configuration, the vertical channel is more effective than horizontal channel because of the buoyancy effect. Under the condition that heat generation is the same, counter flow effectively decreases the temperature difference among blocks. Parallel flow is more effective than counter flow when average temperature of all blocks is considered. In the case of installing obstacles in the lower channel, it is desirable to install obstacles in the bottom of lower channel. Heat transfer rate increases as the height of obstacles increases.

  • PDF

유동 방향이 간접 증발식 냉각기 성능에 미치는 영향 (Effects of flow direction on the performance of an indirect evaporative cooler)

  • 추현선;이관수;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.743-748
    • /
    • 2006
  • Ren et al. analyzed the performance of the indirect evaporative cooler according to the direction of the flow considering evaporation water flow and wetness. However the effect of NTU of each channel on the performance of the indirect evaporative cooler according to the direction of the flow was not analyzed exactly. In this study the effect of the direction of the flow on the Indirect evaporative cooling performance changing NTU of each channel are investigated theoretically. The cooling process of the indirect evaporative cooler by flow direction is modeled into a set of linear differential equations and solved to obtain the exact solutions to the temperatures of the hot fluid, the moist air, and evaporation water. Based on the exact solution in the case of different NTU of each channel, we study the change of the distribution of the temperature according to each flow direction and at the same time analyze the effect of the flow direction on the cooling performance.

  • PDF

에너지 절감형 염색기용 직접냉각수세장치에 대한 연구 (A Study on Direct Cooling and Washing Machine for Energy Saving-Type Dyeing Machine)

  • 한승철;김진호;김제훈;이성규
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.485-491
    • /
    • 2012
  • 최근 국내 섬유산업의 생산량이 증가함에 따라 섬유산업에서 에너지 소비는 계속 증가되고 있는 실정이다. 기존의 염색기는 고온 고압의 특성을 가지고 있기 때문에 염색 후 냉각을 하기 위하여 열교환기를 통한 간접냉각방식을 채택하고 있다. 이러한 간접냉각방식은 물의 소모량이 많으며 작업 시간 또한 오래 걸리는 문제점이 있고 냉각시 염액의 고착으로 인해 냉각 후 환원세정 및 수세를 수차례 하므로 에너지가 많이 소비된다. 따라서 본 논문에서는 고온 고압 액류 염색기의 열교환기에 의한 간접냉각방식을 염색기내에 냉수를 직접 공급하는 직접냉각방식으로 대체하기 위한 장치를 개발하여 기존의 염색기에 적용하여 냉각과 동시에 환원세정공정을 생략하고 수세공정을 단축시키면서 전공정을 마무리함으로써 전체 작업공정을 줄이고 에너지 소비를 절감하는 등의 생산성을 획기적으로 향상시킬 수 있는 직접냉각수세장치를 제안하며, 시제작품을 제작하고, 실제 염색기에 적용하여 기존의 간접 냉각 방식의 염색기와 성능, 자원 및 에너지 절감율을 비교하였다. 또한 시제작품을 적용한 염색기의 염색성 실험을 하였다.

간접식 증발냉각장치의 성능예측과 에너지절약에 관한 연구 (Study on Performance Prediction and Energy Saving of Indirect Evaporative Cooling System)

  • 유성연;김태호;김명호
    • 대한기계학회논문집B
    • /
    • 제39권9호
    • /
    • pp.743-749
    • /
    • 2015
  • 본 연구의 목적은 간접식 증발냉각 장치의 성능을 예측하고, 장치를 공기조화기의 배기열 회수에 적용하였을 경우의 에너지 절약효과를 분석하는 것이다. 플라스틱 열교환기를 사용한 간접식 증발냉각장치의 성능 상관식을 여러가지 조건에서 얻어진 실험 데이터로부터 구하였으며, 이 상관식을 이용하여 환기와 외기의 조건을 변화시켜가면서 장치의 성능변화를 예측하였다. 또한 간접식 증발냉각장치의 배기열 회수에 의한 에너지 절약효과를 우리나라 몇개 도시의 표준기상데이터를 사용하여 분석하였다. 여름철 배기열 회수를 위한 현열냉각장치의 사용율은 평균 44.3%이며 증발냉각장치의 사용율은 96.7% 이다. 증발냉각장치의 배기열 회수에 의한 에너지 절약은 현열냉각장치에 비해서 훨씬 높으며, 서울의 경우 약 3.89 배로 나타났다.

다수의 부구간으로 나누어지는 트로프간 접수냉 전력케이불의 열해석에 관한 연구 (A Study on the Thermal Analysis of Indirect Water Cooled Power Cables Laid within Trough devided into Several Sub-Sections)

  • 문영현;김백;이태식
    • 대한전기학회논문지
    • /
    • 제41권7호
    • /
    • pp.703-711
    • /
    • 1992
  • As the underground area of the metropolitan becomes denser recently, an introduction of forced cooling system is under study to maximize the carrying capacity of existing cables in tunnels. Indirect water cooling system laid within trough will probably be adopted for the next 345KV class underground power cables in this country. The system covers a distance of 1.5-3.0Km for one water cooling interval and one water cooling interval is composed of several sub-sections that have different thermal analysis conditions. Thus the distribution of temperature in each sub-section is described by different conditions in general. In this paper a method that can accurately match the temperature of the coolant in the boundary between sub-sections has been suggested. An algorithm to find the temperature distributions effectively in the thermal system has also been presented. A computer program using this method has been tested in a smaple system and the results have shown the usefulness of this program.

  • PDF

폐벤토나이트 분말의 소성 및 냉각조건에 따른 모르터의 압축강도 발현특성에 관한 연구 (The Study on the Compressive Strength Properties of Mortar using Discarded Bentonite Powder by the Cooling Method after Heat Treatment)

  • 김효열
    • 한국건축시공학회지
    • /
    • 제4권4호
    • /
    • pp.87-94
    • /
    • 2004
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, it is increased using quantity on construction industry day by day. But, the discarded bentonite that is over using at underground excavation works is caused various enviromental trouble as soil and water pollution est. Therefore, this study aims to propose a foundamental report for pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out pozzolan reaction ability of discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments are excuted flow test & compressive strength on age of mortar using discarded Bentonite powder. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite powder is superior to the situation of 600℃. 60min & cooling using of water.

냉이온수기 냉각시스템에 관한 열유동 해석 (Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus)

  • 전성오;이상준;이종철;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.