• Title/Summary/Keyword: Indian society

Search Result 1,085, Processing Time 0.029 seconds

Voxel-Based Thickness Analysis of Intricate Objects

  • Subburaj, K.;Patil, Sandeep;Ravi, B.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.105-115
    • /
    • 2006
  • Thickness is a commonly used parameter in product design and manufacture. Its intuitive definition as the smallest dimension of a cross-section or the minimum distance between two opposite surfaces is ambiguous for intricate solids, and there is very little reported work in automatic computation of thickness. We present three generic definitions of thickness: interior thickness of points inside an object, exterior thickness for points on the object surface, and radiographic thickness along a view direction. Methods for computing and displaying the respective thickness values are also presented. The internal thickness distribution is obtained by peeling or successive skin removal, eventually revealing the object skeleton (similar to medial axis transformation). Another method involves radiographic scanning along a viewing direction, with minimum, maximum and total thickness options, displayed on the surface of the object. The algorithms have been implemented using an efficient voxel based representation that can handle up to one billion voxels (1000 per axis), coupled with a near-real time display scheme that uses a look-up table based on voxel neighborhood configurations. Three different types of intricate objects: industrial (press cylinder casting), sculpture (Ganesha idol), and medical (pelvic bone) were used for successfully testing the algorithms. The results are found to be useful for early evaluation of manufacturability and other lifecycle considerations.

Frictional Characteristics of Woven and Nonwoven Wipes

  • Das A.;Kothari V. K.;Mane D.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.318-321
    • /
    • 2005
  • Demand for the fabric wipes is growing continuously. Wipes in industry are used for cleaning purpose. Cleaning involves rubbing action, so it is very important to know how much frictional force is encountered during the cleaning action. In this study the effects of normal load, sliding speed on frictional characteristics of nonwoven and woven wipes, both dry and wetted with different liquids, against glass and floor tile surfaces have been reported. With the increase in the normal load the coefficient of friction goes on decreasing for both nonwoven and woven wipes and this trend is observed in both dry and wet wipes. The coefficient of friction of both nonwoven and woven wipes against glass surface is in general higher than the floor tile surface. The wipes wetted with water shows an increase in coefficient of friction as compared to dry sample, but there is reduction in the coefficient of friction when the wipe samples are wetted with vegetable oil. In case of dry wipes, the coefficient of friction in case of nonwoven wipe is higher than the woven wipe. In case of woven wipes, the ranges of coefficient of friction either due to change in liquid type, normal load or sliding speed are in general smaller than that in case of nonwoven fabrics.

Bioprocess Strategies and Recovery Processes in Gibberellic Acid Fermentation

  • Shukla, Ruchi;Srivastava, Ashok K.;Chand, Subhash
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.269-278
    • /
    • 2003
  • Gibberellic acid (GA$_3$) is a commercially important plant growth hormone, which is gaining much more attention all over the world due to its effective use in agriculture and brewing industry. Industrially it is produced by submerged fermentation technique using Ascomycetous fungus Gibberella fujikuroi. Solid state and immobilized cell fermentation techniques had also been developed as an alternative to obtain higher yield of GA$_3$. This review summarizes the problems of GA$_3$ fermentation such as production of co-secondary metabolites along with GA$_3$, substrate inhibition and degradation of GA$_3$ to biologically inert compound gibberellenic acid, which limits the yield of GA$_3$ in the fermentation medium. These problems can be overcome by various bioprocessing strategies e.g. two - stage and fed batch cultivation processes. Further research on bioreactor operation strategies such as continuous and / or extractive fermentation with or without cell recycle / retention system need to be investigated for improvement in yield and productivity. Down stream processing for GA$_3$ isolation is also a challenge and procedures available for the same have been critically evaluated.

Effect of Fiber Friction, Yarn Twist, and Splicing Air Pressure on Yarn Splicing Performance

  • Das A.;Ishtiaque S. M.;Parida Jyoti R.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.72-78
    • /
    • 2005
  • The impact of fiber friction, yarn twist, and splicing air pressure on mechanical and structural properties of spliced portion have been reported in the present paper. The mechanical properties include the tensile and bending related properties and, in the structural properties, the diameter and packing density of the splices are studied. A three variable three level facto­rial design approach proposed by Box and Behnken has been used to design the experiment. The results indicate that there is a strong correlation between retained spliced strength (RSS) and retained splice elongation (RSE) with all the experimental variables. It has been observed that RSS increases with the increase in splice air pressure and after certain level it drops, whereas it consistently increases with the increase in yarn twist. The RSE increases with the increase in both fiber friction and yarn twist. It has also been observed that the yarn twist and splicing air pressure have significant influence on splice diameter, percent increase in diameter and retained packing coefficient, but the fiber friction has negligible influence on these parame­ters. Yarn twist and splicing air pressure has a strong correlation with splice flexural rigidity, where as poor correlation with retained flexural rigidity.

External Technology Acquisition of SMEs in the Machinery Industry of Bangalore

  • Subrahmanya, M.H. Bala;Hussain, Zeeshan;Chand M., Ashwin
    • Asian Journal of Innovation and Policy
    • /
    • v.3 no.1
    • /
    • pp.50-71
    • /
    • 2014
  • This paper is an attempt to understand the external technology acquisition (ETA) process of the machinery SME sector in Bangalore city, India. With the onset of economic liberalization, Bangalore based machinery SMEs have significantly shifted their ETAs from India to abroad, particularly Germany and Japan, among others. The primary objective of ETAs is to enhance their competitiveness by means of improving product quality and productivity as well as meeting customer demand. Replacing outdated machinery or overcoming technological obsolescence is a primary objective of only a few. As a result, majority of the SMEs has gone for multiple ETAs since their inception and we found a statistically significant positive correlation between firm age and number of ETAs. The present study has made two empirical contributions: (i) We have thrown light on the core technology up-gradation issue - How do SMEs approach the problem of external technology acquisition in the current globalization era? (ii) We are able to identify and develop a map of ETA process based on the "learning and experiences" of these SMEs.

Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus

  • Prakasham, Reddy Shetty;Kumar, Buddana Sudheer;Kumar, Yannam Sudheer;Shankar, Guntuku Girija
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.614-621
    • /
    • 2012
  • Silver nanoparticles production by the green chemistry approach was investigated using an isolated marine actinomycetes strain. The isolated strain was identified as Streptomyces albidoflavus based on chemotaxonomic and ribotyping properties. The strain revealed production of silver nanoparticles both extracellular and intracellularly. Surface Plasmon Resonance analysis with the function of time revealed that particle synthesis by this strain is reaction time dependent. The produced particles were spherical shaped and monodispersive in nature and showed a single surface plasmon resonance peak at 410 nm. Size distribution histograms indicated production of 10-40-nm-size nanoparticles with a mean size of 14.5 nm. FT-IR spectra of nanopartilces showed N-H, C-H, and C-N stretching vibrations, denoting the presence of amino acid/peptide compounds on the surface of silver nanoparticles produced by S. albidoflavus. Synthesized nanoparticles revealed a mean negative zeta potential and electrophoretic mobility of -8.5 mV and -0.000066 $cm^2/Vs$, respectively. The nanoparticles produced were proteinaceous compounds as capping agents with -8.5 mV zeta potential and revealed antimicrobial activity against both Gram-negative and -positive bacterial strains. Owing to their small size, these particles have greater impact on industrial application spectra.

The Effect of Glass Fiber and Coupling Agents in the Blends of Silicone Rubber and Liquid Crystalline Polymers

  • Das T.;Banthia A.K.;Adhikari B.;Jeong Hye-Won;Ha Chang-Sik;Alam S.
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.261-266
    • /
    • 2006
  • Blends of silicone rubber (VMQ) and liquid crystalline polymer (LCP) were prepared using a melt blending technique in the presence and absence of glass fiber and coupling agents. The effect of glass fiber and coupling agents on the thermal, dynamic mechanical, morphological pro-perties and cure characteristics of VMQ/LCP blends were studied. The vinyl silane coupling agent showed a significant effect on the above mentioned properties of VMQ/LCP blends by reacting at the interface between VMQ and LCP. The viscosity of the VMQ/LCP blends decreased with the addition of a coupling agent. A substantial improvement in storage modulus of VMQ/LCP blends was observed in the presence of glass fiber and coupling agents. However, as a coupling agent vinyl silane proved to be better than amine for the VMQ/LCP-glass-containing blends. The thermal stability of the pure silicone rubber was higher than those of the blends. This high thermal stability of silicone rubber was attributed to the Si-O-Si bonds. However, the thermal stability of the blends decreased further in the presence of a coupling agent, possibly due to a decrease in blend crystallinity.

Immune Regulatory Effect of Newly Isolated Lactobacillus delbrueckii from Indian Traditional Yogurt

  • Hong, Yi-Fan;Lee, Yoon-Doo;Park, Jae-Yeon;Jeon, Boram;Jagdish, Deepa;Jang, Soojin;Chung, Dae Kyun;Kim, Hangeun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1321-1323
    • /
    • 2015
  • Lactic acid bacteria (LAB) are microorganisms that are believed to provide health benefits. Here, we isolated LAB from Indian fermented foods, such as traditional Yogurt and Dosa. LAB from Yogurt most significantly induced TNF-α and IL-1β production, whereas LAB from Dosa induced mild cytokine production. After 16S rRNA gene sequencing and phylogenetic analysis, a Yogurt-borne lactic acid bacterium was identified and classified as Lactobacillus delbrueckii subsp. bulgaricus, and it was renamed L. delbrueckii K552 for the further studies. Our data suggest that the newly isolated L. delbrueckii can be used for the treatment of immune deficiency disorders.

Evaluation of the Coal-Degrading Ability of Rhizobium and Chelatococcus Strains Isolated from the Formation Water of an Indian Coal Bed

  • Singh, Durgesh Narain;Tripathi, Anil Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1101-1108
    • /
    • 2011
  • The rise in global energy demand has prompted researches on developing strategies for transforming coal into a cleaner fuel. This requires isolation of microbes with the capability to degrade complex coal into simpler substrates to support methanogenesis in the coal beds. In this study, aerobic bacteria were isolated from an Indian coal bed that can solubilize and utilize coal as the sole source of carbon. The six bacterial isolates capable of growing on coal agar medium were identified on the basis of their 16S rRNA gene sequences, which clustered into two groups; Group I isolates belonged to the genus Rhizobium, whereas Group II isolates were identified as Chelatococcus species. Out of the 4 methods of whole genome fingerprinting (ERIC-PCR, REP-PCR, BOX-PCR, and RAPD), REP-PCR showed maximum differentiation among strains within each group. Only Chelatococcus strains showed the ability to solubilize and utilize coal as the sole source of carbon. On the basis of 16S rRNA gene sequence and the ability to utilize different carbon sources, the Chelatococcus strains showed maximum similarity to C. daeguensis. This is the first report showing occurrence of Rhizobium and Chelatococcus strains in an Indian coal bed, and the ability of Chelatococcus isolates to solubilize and utilize coal as a sole source of carbon for their growth.

EFFECT OF MIXTURE PREPARATION IN A DIESEL HCCI ENGINE USING EARLY IN-CYLINDER INJECTION DURING THE SUCTION STROKE

  • Nathan, S. Swami;Mallikarjuna, J.M.;Ramesh, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.543-553
    • /
    • 2007
  • It is becoming increasingly difficult for engines using conventional fuels and combustion techniques to meet stringent emission norms. The homogeneous charge compression ignition(HCCI) concept is being evaluated on account of its potential to control both smoke and NOx emissions. However, HCCI engines face problems of combustion control. In this work, a single cylinder water-cooled diesel engine was operated in the HCCI mode. Diesel was injected during the suction stroke($0^{\circ}$ to $20^{\circ}$ degrees aTDC) using a special injection system in order to prepare a nearly homogeneous charge. The engine was able to develop a BMEP(brake mean effective pressure) in the range of 2.15 to 4.32 bar. Extremely low levels of NOx emissions were observed. Though the engine operation was steady, poor brake thermal efficiency(30% lower) and high HC, CO and smoke were problems. The heat release showed two distinct portions: cool flame followed by the main heat release. The low heat release rates were found to result in poor brake thermal efficiency at light loads. At high brake power outputs, improper combustion phasing was the problem. Fuel deposited on the walls was responsible for increased HC and smoke emissions. On the whole, proper combustion phasing and a need for a well- matched injection system were identified as the important needs.