• Title/Summary/Keyword: Indialite/cordierite glass ceramics

Search Result 2, Processing Time 0.018 seconds

Micro/Millimeter-Wave Dielectric Indialite/Cordierite Glass-Ceramics Applied as LTCC and Direct Casting Substrates: Current Status and Prospects

  • Ohsato, Hitoshi;Varghese, Jobin;Vahera, Timo;Kim, Jeong Seog;Sebastian, Mailadil T.;Jantunen, Heli;Iwata, Makoto
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.526-533
    • /
    • 2019
  • Indialite/cordierite glass-ceramics demonstrate excellent microwave dielectric properties such as a low dielectric constant of 4.7 and an extremely high quality factor Qf of more than 200 × 103 GHz when crystallized at 1300℃/20 h, which are essential criteria for application to 5G/6G mobile communication systems. The glass-ceramics applied to dielectric resonators, low-temperature co-fired ceramic (LTCC) substrates, and direct casting glass substrates are reviewed in this paper. The glass-ceramics are fabricated by the crystallization of glass with cordierite composition melted at 1550℃. The dielectric resonators are composed of crystallized glass pellets made from glass rods cast in a graphite mold. The LTCC substrates are made from indialite glass-ceramic powder crystallized at a low temperature of 1000℃/1 h, and the direct casting glass-ceramic substrates are composed of crystallized glass plates cast on a graphite plate. All these materials exhibit excellent microwave dielectric properties.

Crystallization of 90wt% Cordierite-10wt% Enstatite Melt by $TiO_2$ Addition (90wt% Cordierite-10wt% Enstatite 총체의 $TiO_2$ 첨가에 의한 결정화)

  • Rhee, Jhun;Han, Duck-Huyn;Jo, Dong-Soo;Jun, Jong-Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.9-16
    • /
    • 1986
  • The effect of $TiO_2$ addition to the 90wt% Cordierite-10wt% Enstatite base glass was investi-gated to understand the crystallization behavior of the glass. Glasses with addition of $TiO_2$ less than 7, 5wt% had a tendency of surface crystallization and were cracked when heat treated and in this case the crystalline phase formed was indialite. glasses with addition of $TiO_2$ more than 10wt% to 15wt% were crystallized in bulk when heat treated and were suitable for glass-ceramics. The highest microhardness 1640kg/$mm^2$ was obtained when the glass of 12.5wt% $TiO_2$ addition was heat treated at 762$^{\circ}C$ for 60 minutes for nucleation and at 1135$^{\circ}C$ for 20 minutes for crystal growth and in general higher microhardness was obtained when crystalline phase of magnesium aluminum titanate and $\mu$-cordierite were developed. Avrami equation for crystal growth kinetics was applicable in glasses of less than 7.5 wt% $TiO_2$ addition and in case of glasses of more than 10wt% $TiO_2$ addition it was not applicable because of too fast crystal growth.

  • PDF