• Title/Summary/Keyword: Index of biological integrity

Search Result 78, Processing Time 0.025 seconds

Ecological Health Diagnosis of Sumjin River using Fish Model Metric, Physical Habitat Parameters, and Water Quality Characteristics (어류모델 메트릭, 물리적 서식지 변수 및 수질특성 분석에 의한 섬진강의 생태 건강성 진단)

  • Lee, Eui-Haeng;Choi, Ji-Woong;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.184-192
    • /
    • 2007
  • This study was to evaluate ecological health of Sumjin River during April${\sim}$June 2006. The ecological health assessments was based on the Index of Biological Integrity (IBI), Qualitative Babitat Evaluation Index (QHEI), and water chemistry. For the study, the models of IBI and QHEI were modified as 10 and 11 metric attributes, respectively. We also analyzed spatial patterns of chemical water quality over the period of $2002{\sim}2005$, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. In Sumjin River, values of IBI averaged 33 (n= 12), which is judged as a "Fair${\sim}$Good" condition after the criteria of Barbour at al. (1999). There was a distinct spatial variation. Mean IBI score at Site 5 was estimated as 40, indicating a "Good" condition whereas, the mean at Site 3 was 23, indicating a "Poor${\sim}$Fair" condition. Habitat analysis showed that QHEI values in the river averaged 109 (n=6), indicating a "Marginal" condition after the criteria of Harbour et al. (1999). Values of BOD and COD averaged 1.3 mg $L^{-1}$ (scope: $0.9{\sim}1.8$ mg $L^{-1}$) and 3.3 mg $L^{-1}$ (scope: $2.8{\sim}4.0$ mg $L^{-1}$), respectively during the study. It was evident that chemical pollutions by organic matter were minor in the river. Total nitrogen (TN) and total phosphorus (TP) averaged 2.5 mg $L^{-1}$ and 0.067 mg $L^{-1}$, respectively, and the nutrients did not show large longitudinal gradients between the upper and lower reach. Overall, dataset of IBI, QHEI, and water chemistry suggest that river health has been well maintained, compared to other major watersheds in Korea and should be protected from habitat disturbance and chemical pollutions.

Characteristics of Physico-chemical Water Quality Characteristics in Taehwa-River Watershed and Stream Ecosystem Health Assessments by a Multimetric Fish Model and Community Analysis (태화강 수계의 다변수 어류평가 모델 및 군집분석에 의한 이화학적 수질 특성 및 하천 생태건강도 평가)

  • Kim, Yu-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.428-436
    • /
    • 2010
  • This study was to evaluate water quality characteristics and ecological health using a mulimetric fish model in Taehwa-River watershed during May~September 2009. The ecological health assessments were based on the Index of Biological Integrity (IBI) using fish community and the multimetric model of Qualitative Habitat Evaluation Index (QHEI). For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. We also analyzed spatial patterns of chemical water quality over the period of 2000~2009, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. Values of BOD and COD averaged $1.7\;mg\;L^{-1}$ (scope: $0.1{\sim}31.8\;mg\;L^{-1}$) and $3.6\;mg\;L^{-1}$ (scope: $0.4{\sim}33\;mg\;L^{-1}$), respectively during the study. Total nitrogen (TN) and total phosphorus (TP) averaged $2.8\;mg\;L^{-1}$ and $96.8\;{\mu}g\;L^{-1}$, respectively, indicating an eutrophic-hypertrophic state. Also, TN and TP showed longitudinal increases toward the downriver reach. In the watershed, QHEI values varied from 67.5 (fair condition) to 164.5 (good condition) by the criteria of US EPA (1993). There was a abruptly decreasing tendency from T9 site in the QHEI values. According to 1st and 2nd surveys of Taewha River, multimetric model values of IBI was averaged 26.1 (n=14) with "good" condition (B) and the spatial variation was evident. Our results suggest that the mainstream sites was getting worse health condition along the river gradient due to inputs of the point and non-point sources from the urban (Ulsan city). Overall, dataset of IBI, QHEI, and water chemistry indicated that the ecological river health showed a downriver decline and the pattern was closely associated with habitat degradations and chemical pollutions as the waters pass through the urban region.

Evaluations of Ecological Habitat, Chemical Water Quality, and Fish Multi-Metric Model in Hyeongsan River Watershed (형산강 수계의 생태 서식지, 화학적 수질 및 어류의 다변수모델 평가)

  • Kim, Yu-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.279-287
    • /
    • 2010
  • This study was to evaluate ecological conditions of Hyeongsan River watershed from April to September 2009. The ecological health assessments was based on Qualitative Habitat Evaluation Index (QHEI), water chemistry during 2000~2009, and the fish multi-metric model, Index of Biological Integrity (IBI). For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. Values of IBI averaged 25.4 (n=6), which is judged as a "fair" condition (C) after the criteria of Barbour et al. (1999). The distinct spatial variation was found in the IBI. Physical habitat health, based on the values of QHEI, varied from 76 in the downriver (H6) to 150.5 in the headwater (H1) and was evidently more disturbed in the downriver reach. Values of BOD and COD averaged 2.4 $mgL^{-1}$ (range: 0.3~13.8 $mgL^{-1}$) and 4.3 $mgL^{-1}$ (scope: 0.6~12.8 $mgL^{-1}$), respectively during the study period. Total nitrogen (TN) and total phosphorus (TP) averaged 3.0 $mgL^{-1}$ and 103.5 ${\mu}gL^{-1}$, respectively, indicating a severe eutrophication, and the nutrients increased more in the downriver than the headwater. Overall, physical, chemical and IBI parameters showed a typical downriver degradation along main axis of the river from the headwater-to-the downriver. This was mainly attributed to livestock waste and residential influences along with industrial discharge from the urban region.

Diagnosis of Sapkyo Stream Watershed Using the Approach of Integrative Star-Plot Area (생태평가모형(Integrative Star-Plot Area)을 이용한 삽교천 수계 진단)

  • Kim, Ja-Hyun;Yeom, Dong-Hyuk;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.356-368
    • /
    • 2010
  • In this study, we applied approach of integrative star-plot area (SPA), chemical water quality and habitat conditions (QHEI) to diagnoze ecological conditions at the eight sampling sites of Sapkyo Stream. These outcomes were compared with biological health based on the Index of Biological Integrity (IBI) using fish assemblage. And then, we evaluated the integrative ecological health condition using the star-plot method. This approach based on the sum of all the star-plot areas over these water and habitat characteristics. It was developed to reflect an integrative assessment of the ecological health in the stream. The biological health, based on the model values of IBI indicating "fair-poor" condition according to the criteria. Physical habitat health, based on the QHEI, averaged 123 indicating a "good-fair" condition. Also, chemical health, based on simply BOD values indicating "poor grade" according to the criteria of the Ministry of Environment Korea (MEK). The SPA indicating that 50% of the all was impaired condition and the most sampling sites were downstream sites influenced by the point and non-point sources. Overall our results suggest that the ecological health impact was a combined effect of eutrophication and habitat degradations in the stream. The approach of SPA can be used as a tool to evaluate the integrative health of stream environment and to identify possible causes of observed effects.

Influence of Fish Compositions and Trophic/Tolerance Guilds on the Fishkills in Geum-River Watershed (Backje Weir) (금강수계(백제보)에서 발생된 어류폐사에 대한 종 조성 및 트로픽/내성도 길드 영향 분석)

  • Kwon, Hyuk-Hyun;Han, Jeong-Ho;Yoon, Johee;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.393-401
    • /
    • 2013
  • The objectives of this study were to analyze structures of fish community and the ecological health using a multi-metric fish model, the Index of Biological Integrity (IBI) in the Backje Weir of Geum River during two periods namely before-the-fishkill ($B_f$) and after-the-fishkill ($A_f$). The total number of fish species observed were 32 and among them 10 species (35%) were Korean endemic species. The exotic species observed were 3 which decreased by 0.4% after-the-fishkill ($A_f$). The dominant species were Opsariichthys uncirostris amurensis (13%) at the Bf period and Squalidus japonicus coreanus (17%) at the Af period in the Backje Weir. At after the fishkill ($A_{f-I}$) total biomass was about 10 times lower than the biomass before-the-fishkill ($B_f$). The biomass of Carassius auratus decreased 98% after-the-fishkill and as time passed by the biomass recovered to nearly 100%. Similar decrease in the biomass occurred in the population of Opsariichthys uncirostris amurensis, while Rhinogobius brunneus population increased. According to the structure analysis of fish community, species richness index, evenness index and species diversity index were high but after-the fishkill, the values of indices decreased. Tolerant species (64%) dominated the fish community, and the sensitive species (2%) were rare, indicating the degradation of the ecosystem. According to analysis of the multi-metric model (IBI), the mean model value of the fish community in Backje Weir was estimated as 17.5 indicating a "fair condition".

Preliminary Environmental Impact Assessments on Fish Compositions and the Ecological Health of Jeokbyeok River on the Road Construction of Muju-Geumsan Region (무주-금산간 도로건설에 따른 적벽강의 어류 종 조성 분석 및 생태건강도 사전환경성평가)

  • Lee, Sang-Jae;Park, Hee-Sung;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.27-43
    • /
    • 2017
  • The objectives of the study were to evaluate fish compositions, endangered species, community structure, physical habitat, and general water quality for a preliminary environmental impact assessment of Jeokbyeok River on the road construction between two regions. Total number of species and total number of individuals, based on CPUE, were 23 and 1186, respectively. The endangered species (I, II) as the legal protection species were Pseudopungtungia nigra (79 samples) Gobiobotia brevibarba) (5) Gobiobotia macrocephala (2), indicating a requiring of endangered species conservation. In the meantime, exotic species and ecological disturbing species such as Micropterus salmoides and Lepomis macrochirus, were not present, indicating a well conserved area. According to fish community analysis, values of species diversity index were high (range: 0.788 - 1.030), and the dominance index were low (range: 0.097 - 0.183), indicating that the fish community in this area was maintained well without high dominacne by specific species. Also, fish analysis on tolerance guilds and trophic guilds showed that the proportions of sensitive species were largely exceeded the proportions of the tolerant species, while the proportions of insectivore species were largely exceeded the proportions of the omnivore species. This outcome suggests that the ecosystem was well maintained in terms of tolerance and trophic compositions (food chain). Ecological health, based on the multi-metric fish model of Fish Assessment Integrity (FAI), reflected those fish conditions. In other words, values of FAI model averaged 82.4, which means a "good condition" in the criteria of ecological health by the Minstry of Environment, Korea. In addition, general water quality and physical habitat analyses showed that the system was in good condition. Under these conditions, if the road constructions between the two regions happen in the future, inorganic suspended solids may increase in the waterbody, and this may result in indirect or direct influences on the physical habitats and food chain as well as fish compositions, so the ecological protections and prevention strategy from the soil erosion are required in the system.

A Diagnosis of Ecological Health Using a Physical Habitat Assessment and Multimetric Fish Model in Daejeon Stream (물리적 서식지평가기법 및 어류 다변수 평가모델에 의거한 대전천의 생태학적 건강도 진단)

  • Kim, Ja-Hyun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.361-371
    • /
    • 2005
  • The objective of study was to diagnose integrative ecological health of Daejeon Stream, one of the tributaries of Guem River, during May 2004 ${\sim}$ April 2005. The research approach was primarily based on a Qualitative Habitat Evaluation Index (QHEI) and the Index of Biological Integrity (IBI) using fish assemblage. These outcomes were compared with conventional chemical dataset. For the experiment, four sampling sites were chosen from Daejeon Stream and long-term water quality data during 1995 ${\sim}$ 2004 (obtained from the Ministry of Environment) were analyzed in the spatial and temporal aspects. For the biological health assessment, we developed a stream health assessment model (SHA model) far regional applications. We found that current water quality conditions, based on the COD, BOD, TN and TP, were enhanced by 1.6 ${\sim}$ 5.3 fold over the period of 1995 ${\sim}$ 2004 and that the parameters showed a typical longitudinal decline from the upstream to downstream reach. The differences of water quality between the two reaches were more than 4.4 times, indicating a large spatial variations within the stream. The health conditions, based on the SHA model, averaged 23 and varied from 20 to 26 depending on the sampling stations. Values of the QHEI varied from 39 (Poor condition) to 124 (Cood condition)and values of QHEI in the reach of S2 ${\sim}$ S4 had significantly lower than in the headwater site (S1). Also, biological stream health, based on the criteria of US EPA (1993), was judged as 'Poor condition', in the S4 where TN, TP, BOD and COD were highest. In the meantime, maximum value of SHA (26) was found in the upstream reach (S1) where the water quality and QHEI were best. We also found that compositions of sensitive species showed a linear function with water quality conditions and this pattern was evident in the tolerant species. Thus, the biological stream health, based on the SHA model, matched well water chemistry. Overall outcomes suggest that the biological health impact was a function of chemical degradation and physical habitat quality in the stream.

Stream Ecosystem Assessments, based on a Biological Multimetric Parameter Model and Water Chemistry Analysis (생물학적 다변수 모델 적용 및 수화학 분석에 의거한 갑천생태계 평가)

  • Bae, Dae-Yeul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.198-208
    • /
    • 2006
  • This research was to apply a multi-metric approach, so called the Index of Biological Integrity (IBI) as a tool for biological evaluations of water environments, to a wadable stream. For the study, we surveyed 5 sampling locations in Kap Stream during August 2004 ${\sim}$ September 2005. We also compared the biological data with long-term water quality data, obtained from the Ministry of Environment, Korea and physical habitat conditions based on the Quantitative Habitat Evaluation Index (QHEI). We used ten metric systems for the IBI model to evaluate biological stream health. Overall IBI values in Kap Stream averaged 24 (range: 20${\sim}$30, n=5), indicating a "fair ${\sim}$ poor" conditions according to the modified criteria of Karr (1981) and US EPA(1993). Exclusive of 4th survey, average IBI values at the upstream reach (S1 ${\sim}$ S3)and downstream reach (S4 ${\sim}$ S5) were 20 and 24, respectively. However, in 4th survey the averages were 21 and 20 in the upstream and downstream reaches, respectively. This difference was larger in the upstream than in the downstream because of physical condition disturbed during summer monsoon. Values of the QHEI varied from 75(fair condition) to 148 (good condition) and values of QHEI in the S3 were significantly (P=0.001, n=5) lower than other sites. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were greater by 3 ${\sim}$ 8 fold in the downstream than in the upstream reach. We believe that present IBI approach applied in this study may be used as a key tool to set up specific goals for restoration of Kap Stream.

Fish Community and Estimation of Optimal Ecological Flowrate in Up and Downstream of Hoengseong Dam (횡성댐 상·하류의 어류군집 구조와 최적 생태유량 산정)

  • Hur, Jun-Wook;Kang, Hyoeng-Sik;Jang, Min-Ho;Lee, Jeong-Yeol
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.925-935
    • /
    • 2013
  • In this study, a comprehensive field monitoring was conducted to understand habitat conditions of fish species in up and downstream of Hoengseong Dam. Based on the monitoring data, riverine health conditions such as composition ratio of fish species, bio-diversity (dominance index, diversity, evenness and richness), index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI) were assessed, and optimal ecological flowrates (OEF) were estimated using the habitat suitability indexes (HSI) established for three fish species Coreoleuciscus splendidus, Pungtungia herzi and Microphysogobio longidorsalis selected as icon species using the physical habitat simulation system (PHABSIM). The total number of species sampled was 20 species, and two species of Zacco platypus (30.4%) and C. splendidus (20.9%) dominated the fish community. As a result, it was revealed that IBI and QHEI values decreased from upstream to downstream along the river. The estimated IBI value ranged from 24 to 36 with average being 30.9 out of 50, rendering the site ecologically fair to good health conditions. HSI for C. splendidus were determined according to three different month in terms of season: Spring (April), Summer (August) and Autumn (October). HSI for flow velocity were estimated at 0.7 to 0.8 m/s for the Spring, 0.5 to 1.0 m/s for the Summer and 0.8 to 0.9 m/s for the Autumn. HSI for water depth were estimated at 0.3 to 0.5 m for the Spring; 0.3 to 0.5 m for the Summer; and 0.3 to 0.4 m for the Autumn. OEF was estimated at 4.2 and $6.5m^3/s$ for the Spring and Autumn, and $12.0m^3/s$ for the Summer. Overall, it was concluded that the Hoengseong Dam has been relatively well protected from the anthropogenic disturbance for the legally protected species including the endemic species studied in this study.

Tobacco Use Increases Oxidative DNA Damage in Sperm - Possible Etiology of Childhood Cancer

  • Kumar, Shiv Basant;Chawla, Bhavna;Bisht, Shilpa;Yadav, Raj Kumar;Dada, Rima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6967-6972
    • /
    • 2015
  • Background: Cigarette smoking and tobacco chewing are common modes of consuming tobacco all over the world. Parents need to be aware that germ cell integrity is vital for birth of healthy offspring as biological parenting begins much before birth of a child and even before conception. The present study was conducted to determine the etiology of non-familial sporadic heritable retinoblastoma (NFSHRb), by evaluating oxidative sperm DNA damage in fathers due to use of tobacco (smoking and chewing). Materials and Methods: We recruited 145 fathers of NFSHRb children and 53 fathers of healthy children (controls) in the study. Tobacco history was obtained by personal interview. Seminal reactive oxygen species (ROS) in semen, sperm DNA fragmentation index (DFI) and 8 hydroxy 2' deoxyguanosine (8-OHdG) levels in sperm were evaluated. The RB1 gene was screened in genomic blood DNA of parents of children with NFSHRb and controls. Odds ratios (ORs) derived from conditional logistic regression models. Results: There was significant difference in the levels of ROS (p<0.05), DFI (p<0.05) and 8-OHdG (p<0.05) between tobacco users and non-users. The OR of NFSHRb for smokers was 7.29 (95%CI 2.9-34.5, p<0.01), for tobacco chewers 4.75 (2.07-10.9, p<0.05) and for both 9.11 (3.79-39.2; p<0.01). Conclusions: This study emphasizes the adverse effect of tobacco on the paternal genome and how accumulation of oxidative damage in sperm DNA may contribute to the etiology of NFSHRb. In an ongoing parallel study in our laboratory, 11 of fathers who smoked underwent. Meditation and yoga interventions, showed significant decline in levels of highly mutagenic oxidised DNA adducts after 6 months. Thus our lifestyle and social habits impact sperm DNA integrity and simple interventions like yoga and meditation are therapeutic for oxidative damage to sperm DNA.