• 제목/요약/키워드: Independent component analysis (ICA)

검색결과 235건 처리시간 0.025초

인터넷을 통한 원격 얼굴인식 시스템 (Remote Face Recognition System through Internet)

  • 송지환;박종진;배경율
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (하)
    • /
    • pp.2005-2008
    • /
    • 2003
  • 본 논문에서는 생체의 특징을 이용해 신분을 증명 또는 인증하는 생체인식 기술 중 지문이나 장문, 정맥, 홍채를 이용한 인식과 같이 장비에 접촉해야만 인증이 이루어지는 것과 달리 거부감이 없고, 별도의 전문 장비를 필요로 하지 않아 일반 대중들에 쉽게 접근할 수 있는 얼굴인식을 인터넷에 적용한 원격 신분증명 및 인증 시스템을 제안한다. 얼굴인식 알고리즘은 얼굴 특징을 분석하는 방식에 따라 PCA (Principal Component Analysis), ICA (Independent Component Analysis), FDA (Fisher Discriminant Analysis) 등이 발표되어 있다. 이들 알고리즘을 이용해 얼굴 특징을 분석한 결과를 원격지에 신속하고 정확하게 송수신할 수 있는 시스템이 요구됨에 따라 생체인식 시스템의 비교 평가와 함께 인터넷 상에서 얼굴인식을 이용한 원격 얼굴인식 시스템의 구성을 제안한다.

  • PDF

EEG 신호 정확도 향상을 위한 시뮬레이션 소프트웨어 개발 (Development of Simulation Software for EEG Signal Accuracy Improvement)

  • 정해성;이상민;권장우
    • 재활복지공학회논문지
    • /
    • 제10권3호
    • /
    • pp.221-228
    • /
    • 2016
  • 본 논문에서는 EEG 신호 기반 기기 또는 소프트웨어를 사용하기 위해 사용자가 본인의 EEG 신호 정확도를 확인하고, 훈련을 통하여 자신의 EEG 신호 정확도를 향상시킬 수 있는 시뮬레이션 소프트웨어를 제안한다. 실험 데이터로는 풍경사진을 보며 편안한 상태에서 발생되는 신호와 수학문제를 풀며 집중 시에 발생되는 신호를 사용한다. 입력되는 EEG 신호는 독립 성분 분석(Independent Component Analysis, ICA)을 적용하여 잡음을 최소화하고 대역 통과 필터(Band Pass Filter)를 통하여 베타파(${\beta}$, 14-30Hz)만을 취득한다. 취득한 베타파 대역 데이터에서 제곱평균제곱근(Root Mean Square, RMS) 알고리즘을 통하여 특징 정보를 추출하고 지지 벡터 머신(Support Vector Machine, SVM)에 적용하여 분류한다. 분류된 결과는 사용자가 바로 확인할 수 있으며 훈련 전 피험자의 평균 정확도는 79.21%이었던 반면, 연속적인 훈련으로 최고 91.67%의 정확도를 보였다. 이처럼 본 논문에서 개발한 시뮬레이션 소프트웨어는 사용자가 직접 자신의 EEG 신호 정확도를 향상키기는 훈련을 통하여 정확도 향상이 가능하고, EEG 신호 기반으로 이루어진 BCI 시스템의 효율적인 사용을 기대할 수 있다.

필기습관 정보에 기반한 온라인 서명인식 (On-line Signature Identification Based on Writing Habit Information)

  • 성한호;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.322-324
    • /
    • 2003
  • 생체인식 기술은 현재까지 많은 발전을 거듭하고 있으며 국내에서도 연구는 물론 표준화작업 및 데이터 베이스 구축이 활발히 진행되고 있다. 생체인식은 신체의 여러 부분을 이용하는 방법과 습관에서 비롯된 특징을 이용하는 방법이 있는데, 본 연구에서는 이 중에서 개인의 필기습관 정보를 이용하여 인식하였다. 본 연구에서는 필기습관에 주목하여 서명하는 사람의 습관이 잘 드러나는 펜의 기울임과 눌림, 펜의 방위각도 둥의 성분이 표현되어지는 동적인 생채정보를 감지하고 특성을 추출할 수 있는 타블렛과 펜을 사용하여 서명정보를 추출한다. 이렇게 생성된 서명정보의 특징을 추출하기 위하여 패턴인식분야에 널리 활용하고 있는 주성분요소분석(PCA, Principal Component Analysis), 독립성분요소분석(ICA, Independent Component Analysis)기법에 적용하였다. 생성된 두 특징벡터 사이의 거리를 Euclidean Distance를 이용하여 구하고 Nearest Neighbor를 비교하여 인식률을 알아보고 교차인식(Cross Validation) 기법 중 하나인 Leave-One-Out 방법을 이용한 분류성능 측정을 통하여 데이터의 신뢰수준을 알아보았다.

  • PDF

Factorial Code 표현법을 이용한 얼굴 인식 (Face Recognition via Factorial Code Representation)

  • 이오영;박혜영;최승진
    • 한국통신학회논문지
    • /
    • 제26권10B호
    • /
    • pp.1444-1452
    • /
    • 2001
  • 얼굴인식에서 정보 이론적 접근방법은 얼굴 영상을 기저 영상의 합으로 분해하는 것을 기초로 한다. 가장 많이 쓰이고 있는 방법은 Principal Component Analysis (PCA)를 기반으로 하는 eigenface 방법이다. PCA를 기반으로 하는 방법은 데이터의 2차 통계적 구조만을 고려하므로 화소 사이의 고차 통계적 의존성은 고려되지 않는다. Factorial code 표현법은 효과적인 정보 표현의 좋은 방법으로 알려져 있고 이것은 Independent Component Analysis (ICA)와 밀접한 관련이 있다. Factorial code 표현법은 eigenface 방법과 비교할 때 중요한 정보가 포함되어 있는 데이터의 고차 통계적 구조도 고려되어 더욱 효과적인 정보 표현을 기대할 수 있다. 이 논문에서는 PCA를 이용하여 찾아낸 저차원 특징 공간에서 Factorial code 표현법을 이용하여 얼굴인식을 위한 통계적 특징점을 찾아낸다. 얼굴 인식에 있어서 Factorial code 표현법이 eigenface 방법보다 성능이 우수함을 모의실험을 통하여 입증한다.

  • PDF

배경 잡음을 제거하는 음성 신호 잡음 제거기의 구현 (Implementation of Environmental Noise Remover for Speech Signals)

  • 김선일;양성룡
    • 전자공학회논문지 IE
    • /
    • 제49권2호
    • /
    • pp.24-29
    • /
    • 2012
  • 자동차 배기음은 음성과 무관한 거의 독립적인 음원이라고 볼 수 있다. 따라서 자동차 배기음과 섞인 음성 신호의 경우에 두 음원에 대한 사전 정보가 없는 상황이므로 Blind Source Separation 의 한 방법인 Independent Component Analysis를 이용하여 분리해 내었다. 스테레오 마이크를 통해 섞여 들어 온 두 음원을 분리해 내기 위해 Maximum Likelyhood Estimation을 이용하여 각 신호들 사이의 독립성을 최대화 하는 방향으로 분리하였다. 분리된 신호는 어느 쪽이 음성 신호인지 알 수 없으므로 주파수 영역에서 자기 공분산을 구한 후 이 공분산 값들의 기울기를 이용하여 음성 신호와 자동차 배기음 신호을 구분하였으며 이 두 알고리즘을 결합하여 음성 신호 잡음 제거기를 구현하였다.

동적 $H_2^{15}O$ PET에서 앙상블 독립성분분석법을 이용한 심근 혈류 정량화 방법 개발 (Development of Quantification Methods for the Myocardial Blood Flow Using Ensemble Independent Component Analysis for Dynamic $H_2^{15}O$ PET)

  • 이병일;이재성;이동수;강원준;이종진;김수진;최승진;정준기;이명철
    • 대한핵의학회지
    • /
    • 제38권6호
    • /
    • pp.486-491
    • /
    • 2004
  • 목적: 요소분석법. 독립성분분석법 등이 PET을 이용하여 심근혈류를 비침습적으로 측정하기 위하여 사용되어 왔다. 이론적으로 뛰어나고 새로운 방법인 앙상블 독려성분분석법을 이용하여 $H_2^{15}O$ 동적 심근 PET데이터의 정량분석방법을 개발하였다. 이 연구에서 사용한 앙상블 독려성분분석법을 이용하여 환자의 혈류를 정량화 하였다. 대상 및 방법: 관동맥질환이 의심되어 관류 SPECT를 시행한 환자 20명을 대상으로 $H_2^{15}O$ 동적 심근 PET을 시행한 후 앙상블 독립성분분석법을 이용하여 심근 독립성분영상을 추출하였으며, 좌심실영역과 심근영역에 대한 영상대조도를 조사하였다. 앙상블 학습은 독립성분과 가중치 행렬에 대한 확률분포를 가정하고 베이지안 이론에 의해서 혼합자료에 대한 확률분포를 추정한다. 이렇게 추정한 혼합자료의 확률분포와 실제 분포간의 차이인 Kullback-Leibler 발산치가 최소가 되도록 독립성분과 가중치 행렬을 순차적으로 변화시켜가며 최종 해를 찾는 방식이다. 이 연구에서 사후확률분포는 동적 핵의학 영상에 적합한 비음성제약조건과 함께 수정된 가우시안 분포를 이용하여 최적화 하였다. 혈류량은 심첨부, 중벽 네 부분, 하벽 네 부분의 9개 영역으로 나누어 측정하였으며, 측정결과에 대해 관류 SPECT 소견과 관동맥조영술의 소견과 비교하였다. 결과: 전체 20명의 휴식기 및 부하기 영상에서 5명을 제외한 15명의 데이터에 대해 심근혈류를 측정할 수 있었다. $H_2^{15}O$ 동적 심근 PET에서 앙상블 독립성분분석법을 이용하여 정량화한 휴식기 혈류량은 $1.2{\pm}0.40$ ml/min/g, 부하기 혈류량은 $1.85{\pm}1.12$ml/min/g이었다. 같은 영역에 대해 두 번 측정했을 때 측정된 심근혈류값의 상관계수는 0.99로 재현성이 높았다. 분리된 독립성분영상에서 영상대조도는 좌심실에 대한 심근영역의 비는 평균 1:2.7이었다. 관동맥 조영술을 시행한 9명에서 협착이 없는 분절과 협착이 있는 분절의 혈류예비능에 유의한 차이가 있었다(P<0.01). 또한, 관동맥조영술에서 협착이 확인된 66분절의 심근관류 SPECT 소견에서 가역적 혈류감소를 보인 분절의 혈류예비능이 더 많이 감소되는 경향을 보였으나 통계적 유의성을 보이지는 않았다. 결론: 앙상블 학습을 이용한 독립성분분석방법을 이용하여 심근혈류가 측정이 되었다. 앙상블 독립성분분석법을 이용한 $H_2^{15}O$ 동적 심근 PET 분석방법이 관상동맥 질환의 분석 및 동적 핵의학 영상 데이터의 연구에 도움이 될 것으로 기대된다.

MRI와 동시 측정한 뇌전도 신호에서 경사자계 유발잡음의 제거 (Gradient Noise Reduction in EEG Acquired During MRI Scan)

  • 이항로;이하나;한재용;박태석;이수열
    • Investigative Magnetic Resonance Imaging
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 2004
  • 목적: MRI를 촬영하면서 뇌전도 신호를 동시에 측정하는 것은 뇌기능 영상에 있어 매우 필요한 일이다. 그러나 MRI와 동시에 측정한 뇌전도 신호에는 많은 잡음이 유발되는데 이중 가장 심각한 영향을 주는 것은 경사자계에 의해서 유발되는 잡음이다. 경사자계 유발잡음을 ICA를 이용하여 효과적으로 제거하는 방법을 개발하고자 한다. 대상 및 방법: 29채널의 MR-compatible 뇌전도 측정시스템과 3.0 T MRI 시스템을 실험에 사용하였다. 3.0 T MRI 시스템 안에 뇌전도 캡을 쓴 피험자를 놓고 EPI 촬영을 하면서 뇌전도 신호를 측정하였다. 측정된 뇌전도 신호에 대하여 ICA를 적용해 경사자계 유발 잡음을 선택적으로 제거하였다. 제거한 결과를 평균화 방법과 PCA 방법을 사용해 얻은 결과와 비교하였다. 결과: ICA 방법, 평균화 방법 , PCA 방법 모두 경사자계 유발잡음 제거에 있어 일정 부분 효과가 있었다. 그러나 이들 방법들을 상호 비교하였을 때 잡음 제거 결과는 ICA 방법이 평균화 방법과 PCA 방법에 비해 우수하였다. 결론: ICA를 이용하여 경사자계 유발 잡음을 효과적으로 제거할 수 있었다. 잡음이 제거된 뇌전도 신호는 간질환자에 대한 뇌기능영상이나 뇌전도결합 fMRI 촬영에 활용될 수 있을 것이다.

  • PDF

PhysioCover: Recovering the Missing Values in Physiological Data of Intensive Care Units

  • Kim, Sun-Hee;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제10권2호
    • /
    • pp.47-58
    • /
    • 2014
  • Physiological signals provide important clues in the diagnosis and prediction of disease. Analyzing these signals is important in health and medicine. In particular, data preprocessing for physiological signal analysis is a vital issue because missing values, noise, and outliers may degrade the analysis performance. In this paper, we propose PhysioCover, a system that can recover missing values of physiological signals that were monitored in real time. PhysioCover integrates a gradual method and EM-based Principle Component Analysis (PCA). This approach can (1) more readily recover long- and short-term missing data than existing methods, such as traditional EM-based PCA, linear interpolation, 5-average and Missing Value Singular Value Decomposition (MSVD), (2) more effectively detect hidden variables than PCA and Independent component analysis (ICA), and (3) offer fast computation time through real-time processing. Experimental results with the physiological data of an intensive care unit show that the proposed method assigns more accurate missing values than previous methods.

Alteration of Functional Connectivity in OCD by Resting State fMRI

  • Kim, Seungho;Lee, Sang Won;Lee, Seung Jae;Chang, Yongmin
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.583-592
    • /
    • 2021
  • Obsessive-compulsive disorder (OCD) is a mental disorder in which a person repeated a particular thought or feels. The domain of beliefs and guilt predicted OCD symptoms. Although there were some neuroimaging studies investigating OCD symptoms, resting-state functional magnetic resonance imaging (rs-fMRI) study investigating intra-network functional connectivity associated with guilt for OCD is not reported yet. Therefore, in the current study, we assessed the differences between intra-network functional connectivity of healthy control group and OCD group using independent component analysis (ICA) method. In addition, we also aimed to investigate the correlation between changed functional connectivity and guilt score in OCD. Total 86 participants, which consisted of 42 healthy control volunteers and 44 OCD patients, acquired rs-fMRI data using the 3T MRI. After preprocessing the fMRI data, a functional connectivity was used for group independent component analysis. The results showed that OCD patients had higher score in emotion state in beliefs and lower functional connectivity in fronto-parietal network (FPN) than control group. A decrease of functional connectivity in FPN was negatively correlated with feelings of guilt in OCD. Our results suggest excessive increase in guilt negatively affect to process emotional state and behavior or cognitive processing by influencing intrinsic brain activity.

PCA 기반 LDA 혼합 알고리즘을 이용한 실시간 얼굴인식 시스템 구현 (The Embodiment of the Real-Time Face Recognition System Using PCA-based LDA Mixture Algorithm)

  • 장혜경;오선문;강대성
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.45-50
    • /
    • 2004
  • 본 논문에서는 실시간 얼굴인식 시스템을 위한 새로운 PCA 기반 LDA 혼합 알고리즘을 제안한다. 크게 얼굴추출 부분과 얼굴인식 부분으로 구성되어 있으며, 얼굴추출 부분에는 차영상, color filtering, 눈과 입의 영역 검출 그리고 정규화 방법을 사용하였고, 얼굴인식 부분에는 추출된 얼굴 후보 영역 영상에 PCA와 LDA를 혼합하여 적용하였다. 기존의 PCA만을 사용한 인식시스템은 낮은 인식률을 보였으며, LDA만을 사용한 인식시스템에서는 학습데이터의 수에 비하여 영상의 화소 개수가 많은 경우 LDA를 입력 영상에 그대로 적용하기 곤란하였다. 이러한 단점을 극복하기 위하여, 정규화 된 영상에 PCA를 적용하여 차원을 축소한 후 LDA를 사용하여 실시간 인식을 가능하게 하였으며, 인식률 또한 향상시킬 수 있었다. 제안한 시스템의 성능을 평가하기 위하여 자체 제작한 DAUface의 데이터베이스를 가지고 실험을 하였다. 실험 결과, 제안된 방법이 PCA 방법과 LDA 방법, 그리고 ICA 방법에 비해 인식률이 상당히 우수함을 알 수 있었다.