• 제목/요약/키워드: Independent Component Analysis, ICA

검색결과 235건 처리시간 0.037초

An Introduction to Energy-Based Blind Separating Algorithm for Speech Signals

  • Mahdikhani, Mahdi;Kahaei, Mohammad Hossein
    • ETRI Journal
    • /
    • 제36권1호
    • /
    • pp.175-178
    • /
    • 2014
  • We introduce the Energy-Based Blind Separating (EBS) algorithm for extremely fast separation of mixed speech signals without loss of quality, which is performed in two stages: iterative-form separation and closed-form separation. This algorithm significantly improves the separation speed simply due to incorporating only some specific frequency bins into computations. Simulation results show that, on average, the proposed algorithm is 43 times faster than the independent component analysis (ICA) for speech signals, while preserving the separation quality. Also, it outperforms the fast independent component analysis (FastICA), the joint approximate diagonalization of eigenmatrices (JADE), and the second-order blind identification (SOBI) algorithm in terms of separation quality.

Multiple-Channel Active Noise Control by ANFIS and Independent Component Analysis without Secondary Path Modeling

  • Kim, Eung-Ju;Lee, Sang-yup;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.22.1-22
    • /
    • 2001
  • In this paper we present Multiple-Channel Active Noise Control[ANC] system by employing Independent Component Analysis[ICA] and Adaptive Network Fuzzy Inference System[ANFIS]. ICA is widely used in signal processing and communication and it use prewhiting and appropriate choice of non-linearities, ICA can separate mixed signal. ANFIS controller is trained with the hybrid learning algorithm to optimize its parameters for adaptively canceling noise. This new method which minimizes a statistical dependency of mutual information(MI) in mixed low frequency noise signal and there is no need to secondary path modeling. The proposed implementations achieve more powerful and stable noise reduction than Filtered-X LMS algorithms which is needed for LTI assumption and precise secondary error

  • PDF

Emotion recognition from brain waves using artificial immune system

  • Park, Kyoung ho;Sasaki Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.52.5-52
    • /
    • 2002
  • In this paper, we develop analysis models for classification of temporal data from human subjects. The study focuses on the analysis of electroencephalogram (EEG) signals obtained during various emotional states. We demonstrate a generally applicable method of removing EOG and EMG artifacts from EEGs based on independent component analysis (ICA). All EEG channel maps were interpolated from 10 EEG subbands. ICA methods are based on the assumptions that the signals recorded on the scalp are mixtures of signals from independent cerebral and artifactual sources, that potentials arising from different parts of the brain, scalp and body are summed linearly at the electrodes and that prop...

  • PDF

Reference를 갖는 ICA를 이용한 자동적 P300 검출 (Automatic P300 Detection using ICA with Reference)

  • Park, Heeyoul;Park, Seungjin
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.193-195
    • /
    • 2003
  • The analysis of EEG data is an important task in the domain of Brain Computer Interface (BCI). In general, this task is extremely difficult because EEG data is very noisy and contains many artifacts and consists of mixtures of several brain waves. The P300 component of the evoked potential is a relatively evident signal which has a large positive wave that occurs around 300 msec after a task-relevant stimulus. Thus automatic detection of P300 is useful in BCI. To this end, in this paper we employ a method of reference-based independent component analysis (ICA) which overcomes the ordering ambiguity in the conventional ICA. We show here. that ICA incorporating with prior knowledge is useful in the task of automatic P300 detection.

  • PDF

잡음 섞인 한국어 인식을 위한 ICA 비교 연구 (Comparison of ICA Methods for the Recognition of Corrupted Korean Speech)

  • 김선일
    • 전자공학회논문지 IE
    • /
    • 제45권3호
    • /
    • pp.20-26
    • /
    • 2008
  • 두 가지 Independent Component Analysis(ICA) 알고리즘을 적용하여 자동차 엔진 소음과 섞인 음성 신호의 인식을 시도하였다. 이를 이용하여 추정한 신호를 HMM을 이용하여 인식하였고 이 신호의 인식률을 소음이 섞이기 전의 음성 신호의 인식률과 비교하였다. 음성 신호를 추정하는데 두 가지 서로 다른 ICA를 사용하였으며 그 중의 하나는 negentropy를 최대화하는 FastICA 알고리즘이며 다른 하나는 출력 신호 사이의 독립성을 최대화하여서 입력과 출력 사이의 mutual information을 최대화하는 information-maximization approach 이다. 남성 앵커가 진행한 한국어 뉴스 문장에 대한 단어 인식률은 87.85%이며 다양한 신호 대 잡음비를 갖도록 소음을 섞어서 추정을 한 후 인식을 시도한 결과 FastICA를 이용해 추정한 음성 신호에 대한 인식률은 1.65%, information-maximization을 이용해 추정한 음성 신호에 대한 인식률은 2.02% 인식률 저하가 나타났다. 따라서 어느 방법을 적용하든지 의미 있는 차이가 없음을 확인하였다.

회전기계의 결함진단을 위한 비선형 특징 추출 방법의 연구 (Study of Nonlinear Feature Extraction for Faults Diagnosis of Rotating Machinery)

  • ;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.127-130
    • /
    • 2005
  • There are many methods in feature extraction have been developed. Recently, principal components analysis (PCA) and independent components analysis (ICA) is introduced for doing feature extraction. PCA and ICA linearly transform the original input into new uncorrelated and independent features space respectively In this paper, the feasibility of using nonlinear feature extraction will be studied. This method will employ the PCA and ICA procedure and adopt the kernel trick to nonlinearly map the data into a feature space. The goal of this study is to seek effectively useful feature for faults classification.

  • PDF

독립성분분석을 이용한 정상 마우스와 rd/rd 마우스 망막파형의 시공간적 분석 (Spatiotemporal Analysis of Retinal Waveform using Independent Component Analysis in Normal and rd/rd Mouse)

  • 예장희;김태성;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제18권1호
    • /
    • pp.20-26
    • /
    • 2007
  • 망막질환에 의해 변성된 망막에서는 시냅스 조직의 구성이나 전기적 특성이 정상망막과는 크게 다를 것으로 예상된다. 그러므로 본 논문에서는 다채널기록법을 이용하여 정상 망막과 변성 망막에서 망막파형을 기록한 후 그 파형을 주성분 분석법과 독립성분분석법을 이용하여 비교 분석하였다. 주성분분석법은 망막파형 분석법으로 확립된 방법인 반면 독립성분분석법은 EEG 신호의 분석법으로는 확립된 방법이나 아직 망막파형 분석법으로 사용된 적이 없으므로 본 연구진이 최초로 적용하여 보았다. 본 연구진에 의해 프로그램된 독립성분분석법을 위한 toolbox를 사용하여 시공간적 분석을 실시한 결과 정상 마우스에서는 독립성분분석법 또한 주성분분석법과 같이 망막신경절세포 파형의 분석 방법으로서의 사용가능성을 발견하였다 그러나 rd/rd 마우스에서는 독립성분분석법으로 그린 공간지도상에서 다수의 강한 활성과 약한 활성이 혼재되어 나오는 복잡한 양상을 띄었다. 추후 어떠한 기전에 의해 변성망막의 공간지도가 이렇게 복잡한 양상을 띄는지에 관한 연구가 진행되어야 할 것으로 사료된다.

  • PDF

독립성분분석을 이용한 DSP 기반의 화자 독립 음성 인식 시스템의 구현 (Implementation of Speaker Independent Speech Recognition System Using Independent Component Analysis based on DSP)

  • 김창근;박진영;박정원;이광석;허강인
    • 한국정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.359-364
    • /
    • 2004
  • 본 논문에서는 범용 디지털 신호처리기를 이용한 잡음환경에 강인한 실시간 화자 독립 음성인식 시스템을 구현하였다. 구현된 시스템은 TI사의 범용 부동소수점 디지털 신호처리기인 TMS320C32를 이용하였고, 실시간 음성 입력을 위한 음성 CODEC과 외부 인터페이스를 확장하여 인식결과를 출력하도록 구성하였다. 실시간 음성 인식기에 사용한 음성특징 파라메터는 일반적으로 사용되어 지는 MFCC(Mel Frequency Cepstral Coefficient)대신 독립성분분석을 통해 MFCC의 특징 공간을 변화시킨 파라메터를 사용하여 외부잡음 환경에 강인한 특성을 지니도록 하였다. 두 가지 특징 파라메터에 대해 잡음 환경에서의 인식실험 결과, 독립성분 분석에 의한 특징 파라메터의 인식 성능이 MFCC보다 우수함을 확인 할 수 있었다.

주성분 분석을 이용한 블라인드 신호 분리 (B1ind Source Separation by PCA)

  • 이혜경;최승진;방승양
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.304-306
    • /
    • 2001
  • Various methods for blind source separation (BSS) are based on independent component analysis (ICA) which can be viewed as a nonlinear extension of principal component analysis (PCA). Most existing ICA methods require certain nonlinear functions, the shapes of which depend on the probability distributions of sources (which is not known in advance), whereas FCA is a linear learning method based on only second-order statistics. In this paper we show how BSS can be achieved by FCA, provided that sources are spatially uncorrelated but temporally correlated.

  • PDF

유전자발현데이터의 군집분석을 위한 나무 의존 성분 분석 (Tree-Dependent Components of Gene Expression Data for Clustering)

  • 김종경;최승진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.4-6
    • /
    • 2006
  • Tree-dependent component analysis (TCA) is a generalization of independent component analysis (ICA), the goal of which is to model the multivariate data by a linear transformation of latent variables, while latent variables fit by a tree-structured graphical model. In contrast to ICA, TCA allows dependent structure of latent variables and also consider non-spanning trees (forests). In this paper, we present a TCA-based method of clustering gene expression data. Empirical study with yeast cell cycle-related data, yeast metaboiic shift data, and yeast sporulation data, shows that TCA is more suitable for gene clustering, compared to principal component analysis (PCA) as well as ICA.

  • PDF