• 제목/요약/키워드: Independent Component Analysis, ICA

Search Result 235, Processing Time 0.028 seconds

Independent Component of EEG and Source Position Estimation (EEG 독립성분과 위치추정)

  • Kim, Eung-Soo;Lee, You-Jung;Cho, Duk-Yun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.297-300
    • /
    • 2001
  • 뇌파(Electroencephalogram, EEG)는 뇌의 자발적 전기활동을 두피에서 측정한 것이다. 그 동안 뇌질환과 관련된 임상에서 주로 사용되어져 왔으며, 비선형 동역학 연구를 통해 결정론적인 동역학 신호임이 밝혀짐에 따라 뇌 기능연구 분야에서 그 응용범위가 넓어지고 있다. 우리는 뇌파 신호에 대하여 독립성분분석(Independent Component Analysis, ICA)을 통하여 그 결과를 알아보았다. 즉, 뇌파의 독립성분 분석 적용 타당성을 알아본 다음 이를 적용하여 독립 소스들을 분리해 내었다. 또한 Topological Mapping을 이용하여 각각의 독립 소스들이 뇌의 어느 위치에서 발생하는지도 알아보았다. 이를 통하여 EEG에 독립성분분석을 적용함으로써 뇌 활동의 시간적, 공간적 분석이 가능하고 유용함을 나타내었다.

  • PDF

Bio- Information Extraction of On-line Signature Based on Pen-Input Informations and Feature Extraction with Independent Component Analysis (펜 입력정보를 기반으로 한 온라인 서명의 생체정보 추출 및 ICA를 이용한 특징 추출)

  • 성한호;윤성수;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.577-579
    • /
    • 2002
  • 향후 보안시장을 이끌어갈 생체인식 기술은 현재까지 많은 발전을 거듭하고 있다. 이미 알려진 바와 같이 생체인식은 신체의 여러 부분들과 신체적 특징, 개인의 습관들이 이용되는데 전자의 경우 지문, 얼굴, 홍채, 망막, 음성, 필체, 정맥 등의 인식이 있고 후자의 경우 타이핑 습관, 걸음걸이 습관, 필기 습관 등이 해당된다. 본 연구에서는 서명인식을 필체 자체의 특징에 관련된 정보를 추출하여 인식하는 방법과는 달리 개개인의 필기 습관에 주목하여 서명을 할 때 펜을 눌러쓴 정도, 펜을 사용하는 위치 및 펜을 얼마나 뉘어 쓰는지 세워 쓰는지, 왼손잡이인지 오른손잡이인지 등의 동적 정보에 따른 특성을 알 수 있는 펜의 방위각과 기울임 정도에 대한 생체정보를 추출하고 현재 음성인식 등 여러 분야에서 사용되는 ICA를 사용하여 추출한 서명데이터의 생체정보를 분리.추출하여 이를 개개인의 검증데이터로 활용하는 방법을 제안한다.

  • PDF

Design of New Density Estimator with Entropy Maximization (엔트로피 최대화를 이용한 새로운 밀도추정자의 설계)

  • Kim, Woong-Myung;Lee, Hyon-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.796-798
    • /
    • 2005
  • 본 연구에서는 엔트로피 이론을 사용하여 ICA(Independent Component Analysis) 점수함수를 생성하는 새로운 밀도추정자(Density Estimator)를 제안한다. 원 신호에 대한 밀도함수의 추정은 적당한 점수함수를 생성하기 위해 필요하고, 미분 가능한 밀도함수인 커널을 이용한 밀도추정법(Kernel Density Estimation)을 이용하여 점수함수를 생성하였다. 보다 빠른 점수함수의 생성을 위해서 식의 형태를 convolution 형태로 표현하였으며, ICA 학습을 위해서 결합엔트로피를 최대화(Joint Entropy Maximization)하는 방향으로 커널의 폭을 학습하였다. 이를 위해서 기울기 강하법(Gradient descent method)를 사용하였으며, 이러한 제약 사항은 새로운 밀도 추정자를 설계하기 위한 기본적인 개념을 나타낸다. 실험결과, 커널의 폭을 담당하는 smoothing parameters들이 일정한 값으로 학습함을 알 수 있었다.

  • PDF

Development of an algorithm for the separation of ECG from mixed EMG signal (ICA를 이용한 근전도에 첨가된 심전도 신호 분리 알고리즘의 개발)

  • Lee, J.;Kwon, O.Y.;Lee, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2687-2689
    • /
    • 2002
  • 본 연구는 환자의 근육 상태를 표면 근전도(EMG, Electrocardiogram)를 통해 정량적으로 평가한 결과를 기반으로 적응 전기치료를 수행 시, 근전도 정량평가에 영향을 주는 심전도 신호를 독립요소 해석(ICA, Independent Component Analysis)을 이용하여 획득된 신호로부터 분리함으로써, 정확한 근전도 정량평가를 할 수 있도록 하는 것을 목적으로 한다. 실험 방법은 소스(source)를 근전도와 심전도 2개로 가정하고, 4 채널을 통하여 획득된 신호를 10 Hz-500 Hz의 대역통과 필터를 이용하여 필터링한 후, 1000 sample/sec로 샘플링하여 센서로 사용하였으며, JADE(Joint Approximate Diagonalization of Eigen-matrices) 알고리즘을 통하여 근전도 신호와 심전도 신호를 분리하였다. 알고리즘의 permutation ambiguity와 scaling ambiguity 특성 문제를 해결하기 위하여, 분리된 신호의 주파수 분석을 통하여 심전도와 근전도 신호로 구분하였으며, 인식된 근전도 신호의 크기를 센서 신호를 기준으로 복원하였다. 결론적으로 아날로그 및 디지털 필터와 달리 근전도의 신호의 왜곡을 극소화하면서도 심전도 신호를 분리해 냄으로써, 근전도를 통한 근육상태의 효과적인 평가가 가능하게 되었다.

  • PDF

A non-merging data analysis method to localize brain source for gait-related EEG (보행 관련 뇌파의 신호원 추정을 위한 비통합 데이터 분석 방법)

  • Song, Minsu;Jung, Jiuk;Jee, In-Hyeog;Chu, Jun-Uk
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.679-688
    • /
    • 2021
  • Gait is an evaluation index used in various clinical area including brain nervous system diseases. Signal source localizing and time-frequency analysis are mainly used after extracting independent components for Electroencephalogram data as a method of measuring and analyzing brain activation related to gait. Existing treadmill-based walking EEG analysis performs signal preprocessing, independent component analysis(ICA), and source localizing by merging data after the multiple EEG measurements, and extracts representative component clusters through inter-subject clustering. In this study we propose an analysis method, without merging to single dataset, that performs signal preprocessing, ICA, and source localization on each measurements, and inter-subject clustering is conducted for ICs extracted from all subjects. The effect of data merging on the IC clustering and time-frequency analysis was investigated for the proposed method and two conventional methods. As a result, it was confirmed that a more subdivided gait-related brain signal component was derived from the proposed "non-merging" method (4 clusters) despite the small number of subjects, than conventional method (2 clusters).

A New Carrier frequency Offset Estimation Using CP-ICA Scheme in OFDM Systems (OFDM 시스템에서 CP-ICA 기법을 이용한 새로운 주파수 옵셋 추정)

  • Kim, Jong-Deuk;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1257-1264
    • /
    • 2006
  • The carrier frequency offset causes loss of orthogonality between sub-carriers, thus leads to inter-carrier interference (ICI) in the OFDM symbol. This ICI causes severe degradation of the BER performance of the OFDM receiver. In this paper, we propose a new ICI cancellation algorithm which estimates frequency offset at the time-domain by using CP-ICA method to the received sub-carriers phase rotation. This algorithm is based on a statistical blind estimation method, which mainly utilizes the EVD, rotating phase and the $4^{th}-cumulants$. Since our scheme does not need any training and pilot symbol in estimation, we can expect enhanced bandwidth efficiency in OFDM systems. Simulation results show that the proposed frequency offset estimator is more accurate than the other estimators in $0.0<\varepsilon<1.0$.

Skin Pigmentation Detection Using Projection Transformed Block Coefficient (투영 변환 블록 계수를 이용한 피부 색소 침착 검출)

  • Liu, Yang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1044-1056
    • /
    • 2013
  • This paper presents an approach for detecting and measuring human skin pigmentation. In the proposed scheme, we extract a skin area by a GMM-EM clustering based skin color model that is estimated from the statistical analysis of training images and remove tiny noises through the morphology processing. A skin area is decomposed into two components of hemoglobin and melanin by an independent component analysis (ICA) algorithm. Then, we calculate the intensities of hemoglobin and melanin by using the projection transformed block coefficient and determine the existence of skin pigmentation according to the global and local distribution of two intensities. Furthermore, we measure the area and density of the detected skin pigmentation. Experimental results verified that our scheme can both detect the skin pigmentation and measure the quantity of that and also our scheme takes less time because of the location histogram.

Implementation of saliency map model using independent component analysis (독립성분해석을 이용한 Saliency map 모델 구현)

  • Sohn, Jun-Il;Lee, Min-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.286-291
    • /
    • 2001
  • We propose a new saliency map model for selecting an attended location in an arbitrary visual scene, which is one of the most important characteristics of human vision system. In selecting an attended location, an edge information can be considered as a feature basis to construct the saliency map. Edge filters are obtained from the independent component analysis(ICA) that is the best way to find independent edges in natural gray scenes. In order to reflect the non-uniform density in our retina, we use a multi-scaled pyramid input image instead of using an original input image. Computer simulation results show that the proposed saliency map model with multi-scale property successfully generates the plausible attended locations.

  • PDF

Laver Farm Feature Extraction From Landsat ETM+ Using Independent Component Analysis

  • Han J. G.;Yeon Y. K.;Chi K. H.;Hwang J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.359-362
    • /
    • 2004
  • In multi-dimensional image, ICA-based feature extraction algorithm, which is proposed in this paper, is for the purpose of detecting target feature about pixel assumed as a linear mixed spectrum sphere, which is consisted of each different type of material object (target feature and background feature) in spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is consisted of multi-dimensional data structure and, there is target feature, which is purposed to extract and various background image is mixed. In this paper, in order to eliminate background features (tidal flat, seawater and etc) around target feature (laver farm) effectively, pixel spectrum sphere of target feature is projected onto the orthogonal spectrum sphere of background feature. The rest amount of spectrum sphere of target feature in the pixel can be presumed to remove spectrum sphere of background feature. In order to make sure the excellence of feature extraction method based on ICA, which is proposed in this paper, laver farm feature extraction from Landsat ETM+ satellite image is applied. Also, In the side of feature extraction accuracy and the noise level, which is still remaining not to remove after feature extraction, we have conducted a comparing test with traditionally most popular method, maximum-likelihood. As a consequence, the proposed method from this paper can effectively eliminate background features around mixed spectrum sphere to extract target feature. So, we found that it had excellent detection efficiency.

  • PDF

An Efficient Composite Image Separation by Using Independent Component Analysis Based on Neural Networks (신경망 기반 독립성분분석을 이용한 효율적인 복합영상분리)

  • Cho, Yong-Hyun;Park, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.210-218
    • /
    • 2002
  • This paper proposes an efficient separation method of the composite images by using independent component analysis(ICA) based on neural networks of the approximate learning algorithm. The Proposed learning algorithm is the fixed point(FP) algorithm based on Secant method which can be approximately computed by only the values of function for estimating the root of objective function for optimizing entropy. The secant method is an alternative of the Newton method which is essential to differentiate the function for estimating the root. It can achieve a superior property of the FP algorithm for ICA due to simplify the composite computation of differential process. The proposed algorithm has been applied to the composite signals and image generated by random mixing matrix in the 4 signal of 500-sample and the 10 images of $512{\times}512-pixel$, respectively The simulation results show that the proposed algorithm has better performance of the learning speed and the separation than those using the conventional algorithm based method. It also solved the training performances depending on initial points setting and the nonrealistic learning time for separating the large size image by using the conventional algorithm.