• 제목/요약/키워드: Independent Component Analysis, ICA

검색결과 235건 처리시간 0.033초

수면파형의 독립성분분석 (Independent Component Analysis(ICA) of Sleep Waves)

  • 이일근
    • 수면정신생리
    • /
    • 제8권1호
    • /
    • pp.67-71
    • /
    • 2001
  • Independent Component Analysis (ICA) is a blind source separation method using unsupervised learning and mutual information theory created in the late eighties and developed in the nineties. It has already succeeded in separating eye movement artifacts from human scalp EEG recording. Several characteristic sleep waves such as sleep spindle, K-complex, and positive occipital sharp transient of sleep (POSTS) can be recorded during sleep EEG recording. They are used as stage determining factors of sleep staging and might be reflections of unknown neural sources during sleep. We applied the ICA method to sleep EEG for sleep waves separation. Eighteen channel scalp longitudinal bipolar montage was used for the EEG recording. With the sampling rate of 256Hz, digital EEG data were converted into 18 by n matrix which was used as a original data matrix X. Independent source matrix U (18 by n) was obtained by independent component analysis method ($U=W{\timex}X$, where W is an 18 by 18 matrix obtained by ICA procedures). ICA was applied to the original EEG containing sleep spindle, K-complex, and POSTS. Among the 18 independent components, those containing characteristic shape of sleep waves could be identified. Each independent component was reconstructed into original montage by the product of inverse matrix of W (inv(W)) and U. The reconstructed EEG might be a separation of sleep waves without other components of original EEG matrix X. This result (might) demonstrates that characteristic sleep waves may be separated from original EEG of unknown mixed neural origins by the Independent Component Analysis (ICA) method.

  • PDF

Stereo Matching Using Independent Component Analysis

  • Jeon, S.H.;Lee, K.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.496-498
    • /
    • 2003
  • Signal is composed of the independent components that can describe itself. These components can distinguish itself from any other signals and be extracted by analysis itself. This algorithm is called Independent Component Analysis (ICA) and image signal is considered as linear combination of independent components and features that is the weighted vector of independent component. This algorithm is already used in order to extract the good feature for image classification and very effective In this paper, we'll explain the method of stereo matching using independent component analysis and show the experimental result.

  • PDF

Predicting Unknown Composition of a Mixture Using Independent Component Analysis

  • Lee, Hye-Seon;Park, Hae-Sang;Jun, Chi-Hyuck
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 춘계학술대회
    • /
    • pp.127-134
    • /
    • 2005
  • A suitable representation for the conceptual simplicity of the data in statistics and signal processing is essential for a subsequent analysis such as prediction, pattern recognition, and spatial analysis. Independent component analysis (ICA) is a statistical method for transforming an observed high-dimensional multivariate data into statistically independent components. ICA has been applied increasingly in wide fields of spectrum application since ICA is able to extract unknown components of a mixture from spectra. We focus on application of ICA for separating independent sources and predicting each composition using extracted components. The theory of ICA is introduced and an application to a metal surface spectra data will be described, where subsequent analysis using non-negative least square method is performed to predict composition ratio of each sample. Furthermore, some simulation experiments are performed to demonstrate the performance of the proposed approach.

  • PDF

독립 성분 분석과 스펙트럼 향상에 의한 잡음 환경에서의 음성인식 (Speech Recognition in Noise Environment by Independent Component Analysis and Spectral Enhancement)

  • 최승호
    • 대한음성학회지:말소리
    • /
    • 제48호
    • /
    • pp.81-91
    • /
    • 2003
  • In this paper, we propose a speech recognition method based on independent component analysis (ICA) and spectral enhancement techniques. While ICA tris to separate speech signal from noisy speech using multiple channels, some noise remains by its algorithmic limitations. Spectral enhancement techniques can compensate for lack of ICA's signal separation ability. From the speech recognition experiments with instantaneous and convolved mixing environments, we show that the proposed approach gives much improved recognition accuracies than conventional methods.

  • PDF

Constrained Spatiotemporal Independent Component Analysis and Its Application for fMRI Data Analysis

  • Rasheed, Tahir;Lee, Young-Koo;Lee, Sung-Young;Kim, Tae-Seong
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권5호
    • /
    • pp.373-380
    • /
    • 2009
  • In general, Independent component analysis (ICA) is a statistical blind source separation technique, used either in spatial or temporal domain. The spatial or temporal ICAs are designed to extract maximally independent sources in respective domains. The underlying sources for spatiotemporal data (sequence of images) can not always be guaranteed to be independent, therefore spatial ICA extracts the maximally independent spatial sources, deteriorating the temporal sources and vice versa. For such data types, spatiotemporal ICA tries to create a balance by simultaneous optimization in both the domains. However, the spatiotemporal ICA suffers the problem of source ambiguity. Recently, constrained ICA (c-ICA) has been proposed which incorporates a priori information to extract the desired source. In this study, we have extended the c-ICA for better analysis of spatiotemporal data. The proposed algorithm, i.e., constrained spatiotemporal ICA (constrained st-ICA), tries to find the desired independent sources in spatial and temporal domains with no source ambiguity. The performance of the proposed algorithm is tested against the conventional spatial and temporal ICAs using simulated data. Furthermore, its performance for the real spatiotemporal data, functional magnetic resonance images (fMRI), is compared with the SPM (conventional fMRI data analysis tool). The functional maps obtained with the proposed algorithm reveal more activity as compared to SPM.

독립성분 분석을 이용한 번호판 숫자 인식 (Recognition of Numeric Characters in License Plate based on Independent Component Analysis)

  • 정병준;강현철
    • 대한전자공학회논문지SP
    • /
    • 제46권2호
    • /
    • pp.99-107
    • /
    • 2009
  • 본 논문에서는 자동차 번호판 숫자의 특징을 추출하기 위해 강화된 독립성분분석(independent component analysis)의 혼합모델을 제안한다 독립성분분석은 고차 통계적 특성만을 이용하기 때문에 고차 통계적 특성과 숫자 종류별 상관관계에 대한 특성을 고려하지 못한다. 이러한 독립성분분석의 한계를 극복하기 위해, 본 논문에서는 주성분분석(principle component analysis)과 선형판별분석(linear discriminant analysis)을 조합한 혼합 모델 형태의 독립성분분석을 제안한다. 실험 결과, 제안된 혼합 모델은 독립성분분석이나 다른 혼합 모델들보다 특징 추출과 인식에서 우수한 성능을 보임을 확인하였다.

독립성분해석 기법과 그람-슈미트 방법을 이용한 영상분리방법 (Image classification method using Independent Component Analysis and Gram-Schmidt method)

  • 홍준식;유정웅
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (A)
    • /
    • pp.505-507
    • /
    • 2001
  • 본 논문에서는 그람-슈미트 방법 및 독립 성분 해석(Independent Component Analysis, ICA)기법을 이용한 영상분리방법을 제안한다. 이 제안된 방법은 전처리 없이 ICA나 주성분 해석(Principal Component Analysis, PCA)을 이용한 것에 비해 개선된 영상을 보여준다. 이는 원래의 ICA 모델에 대하여 동일한 조건으로 일반화하여 그람-슈미트의 독립된 성분들이 ICA 모델에 충분히 동일하다는 것을 보여준다.

독립성분해석과 정규화를 이용한 영상분류 방법 (Image Classification Method using Independent Component Analysis and Normalization)

  • 홍준식;유정웅
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권9호
    • /
    • pp.629-633
    • /
    • 2001
  • 본 논문에서는 독립 성분 해석(Independent Component Analysis, ICA) 기법과 정규화를 이용한 영상분류 방법을 제안한다. 이 제안된 방법은 전처리 없이 ICA나 주성분 해석(Principal Component Analysis, PCA)을 이용한 것에 비해 잡음에 대한 강인성을 증가시킨다. 영상에 잡음이 인가된 경우, CPA는 N(0, 0.4), ICA는 N(0.53)까지이 분류가 가능함을 보이는 반면에 비해, 제안된 정규화 전처리는 N(0, 0.75)까지 영상분류가 됨을 실험에서 보이고 있다.

  • PDF

독립성분해석 기법과 인근평균 및 정규화를 이용한 영상분류 방법 (Image classification method using Independent Component Analysis, Neighborhood Averaging and Normalization)

  • 홍준식;유정웅;김성수
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.389-394
    • /
    • 2001
  • 본 논문에서는 독립 성분 해석(Independent Component Analysis, ICA) 기법과 인근 평균 및 정규화를 이용한 영상 분류 방법을 제안하였다. ICA에 잡음을 주어 영상을 분류하였을 때, 잡음에 대한 강인성을 증가시키기 위하여, 제안된 인근 평균 및 정규화를 전처리로 적용하였다. 제안된 방법은 전처리 없이 ICA에 주성분 해석(Principal Component Analysis, PCA)을 이용한 것에 비해 잡음에 대한 강인성을 증가시키는 것을 모의 실험을 통하여 확인하였다.

  • PDF

주성분분석 및 독립성분분석을 이용한 이차원 영상에서의 다중해상도 거리 측정 (A Multi-Resolution Distance Measure for Two Dimensional Images Using Principal Component Analysis and Independent Component Analysis)

  • 홍준식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (A)
    • /
    • pp.247-249
    • /
    • 2002
  • 본 논문에서는 주성분 분석(principal component analysis; 이하 PCA) 및 독립성분분석(independent component analysis; 이하 ICA)을 이용, 이차원 영상을 분류하여 다중해상도에서 영상간의 거리를 측정하여 PCA 와 ICA 중에서 어느 것이 영상간의 상대적 식별을 용이하게 하는지 모의 실험을 통하여 확인하고자 한다. 모의 실험 결과로부터, ICA가 PCA에 비하여 영상간의 상대적 식별이 용이하여 빨리 수렴이 되는 것을 모의 실험을 통하여 확인하였다.

  • PDF