독립 요소 분석 (Independent Component Analysis: ICA)는 텍스처를 의미 있는 특징으로 변환하는 강인한 영상 필터를 생성하기 위한 확률적 방법이다. ICA는 고차통계적 특성을 사용하여 ICA 필터와 독립 요소를 동시에 학습한다. 제안한 분류 방법은 fast ICA 알고리즘을 사용하여 KOMPSAT 영상으로부터 ICA 필터를 생성한 다음, 필터에 의해 투영된 텍스처들의 특징들을 독립 평면상에서 무감독 방법으로 분류한다. KOMPSAT 영상은 텍스처 성분이 뚜렷하지 않는 영역이 존재하기 때문에 본 논문에서는 투영된 특징 값들과 윈도우 내의 정규화된 평균 화소값으로 특징 벡터를 재구성하였다. 분류 방법으로는 K-means 클러스터링을 적용하였다. 6.6m 해상도를 가진 KOMPSAT 흑백 영상에 대해 제안한 방법은 우수한 분류 성능을 보인다.
의료용 초음파 시스템으로 혈류 속도를 측정할 때, 순수한 혈류 신호의 검출이 필요하다. 초음파 트랜스듀서를 통해 들어오는 반사 신호는 체세포 조직(tissue), 혈관 벽(blood wall), 적혈구(red blood cell), 잡음(noise) 등이 혼합된 신호이다. 혼합된 신호에서 체세포 조직과 혈관 벽 신호를 클러터(clutter)라고 한다. 본 논문에서는 ICA(independent component analysis)를 적용하여 클러터 신호와 잡음을 효과적으로 제거하는 방법을 제시하였다. Field II 초음파 시뮬레이션 프로그램을 이용하여 초음파 반사 신호를 생성하고, ICA를 사용하여 각 독립 신호들을 분리, 클러터 신호를 제거하여 혈류 신호를 추출했다. 추출전 혈류신호를 2D 자기상관(autocorrelation) 방법으로 혈류 속도를 측정했다. 그리고 PCA(principal component analysis)방법을 적용한 고유 필터(autocorrelation) 방법으로 클러터를 제거한 결과와 비교하였다. 그 결과 잡음 환경에서의 혈류 속도 측정에 ICA 방법이 우수한 적용 결과를 보였다.
이 논문에서는 다층퍼셉트론(MLP:Multilayer Perceptron)에서 입력에 잡음이 섞인 경우 출력노드의 확률밀도 함수를 유도하고, 이의 적분으로 잡음에 의하여 패턴이 오인식될 확률을 유도하였다. 그리고, 이를 향상시키는 선형적 방법을 제안하였다. 즉, 독립성분분석(ICA: independent component analysis)과 주성분분석(PCA: principle component analysis)를 적용하여, 이들이 지닌 잡음 처리 효과를 SNR(Signal-to-Noise Ratio) 관점에서 분석하였다. 그리고 이들이 잡음을 처리한 후 MLP에 입력 시 나타나는 잡음 강건성을 필기체 숫자 인식의 시뮬레이션으로 확인하였다.
The rotation-based transformation (RBT) for privacy preserving data mining is vulnerable to the independent component analysis (ICA) attack. This paper introduces a modified multiple-rotation-based transformation technique for special mining applications, mitigating the ICA attack while maintaining the advantages of the RBT.
This paper proposes a new online calibration algorithm for the array antenna system. As you know, the several previous calibration methods for the mutual coupling did not estimate but measure mutual coupling effect at the real or test-bed system directly. Therefore we suggest some idea to compensate the calibration errors due to mutual coupling effect and mismatch in cables and electronic modules without the off-line calibration. In this work, we can calibrate the array antenna system under the operation of the system using Independent Component Analysis(ICA). This is what is called an online calibration. As you know, the ICA method has permutation and scaling problems. However, we solve problems of the ICA method and apply it to the calibration of an array antenna. The method simultaneously estimates the DOA(Direction of Arrival) of the signals, and calibrates the array for that specific angle. The proposed algorithm is evaluated by computer simulation and its behavior is illustrated by a numerical example.
In order to extract only the alpha activity related signals from EEG recordings, we have applied Constrained Independent Component Analysis (cICA), a new extension of ICA in which some a priori knowledge of the alpha activity is utilized to extract only desired components. Its extraction (or filtering) performance has been compared to that of the conventional band-pass filtering via the scalp alpha power maps and cortical source maps of the alpha activity. Our results demonstrate that the alpha power maps and cortical source maps from the cICA-extracted alpha signals reveal more focalized alpha generating regions of the brain than those from the band-pass filtered alpha EEG signals. Furthermore they match more closely the activated regions of the brain mapped using fMRI, validating our results. We believe that the cICA-based filtering approach of EEG signals is a more effective means of extracting a specific brain activity reflected in EEG signals that will result in more accurate source localization or imaging maps.
독립성분분석은 차원이 높은 다변량데이타로부터 기저구조를 형성하는 독립성분을 분리하는데 사용되는 기법으로서 패턴인식, 예측 등 2차적 분석을 위한 1차 분석단계에서 사용할 수 있다. 본 연구에서는 독립성분분석을 이용하여 여러 혼합물 데이터로부터 독립성분을 분리한 다음 각 구성성분의 혼합비율을 예측하는 절차를 제안한다. 적용예로서 도금강판의 엑스선 회절강도값으로부터 여러가지 상을 분리한 다음 비음최소자승법을 이용하여 각 상의 분율을 예측하였으며, 이러한 제안방안의 타당성 평가를 위하여 모의 실험을 실시하였다.
본 논문은 화자 적응시 화자 독립 모델의 차수를 줄이고 MLLR (Maximum Likelihood Linear Regression) 알고리즘에서 요구되는 역행렬 횟수를 줄이는 방법을 제안한다. 주성분분석 (PCA: principal components analysis)과 독립성분분석 (ICA: independent components analysis)을 통해 모델 혼합성분 (mixture component)들간의 상관관계를 줄임으로서 모델의 차수를 감소하였다. 주성분분석 및 독립성분분석에 요구되는 추가 연산량은 화자 독립 모델을 훈련할 때 추가함으로써 화자 적응시에 추가되는 연산량은 극히 미소하다. 36차의 HMM 파라메타 차수를 PCA는 12차, ICA는 10차로 감소하였을 때 기존의 MLLR 적응방법과 유사한 단어 인식률을 나타내었다. 즉, 모델 파라미터의 차수를 n이라고 할 때 기존의 MLLR알고리즘에서 역행열 연산에서 요구되는 연산량은 O(n⁴)에 비례하므로 PCA는 1/81, ICA는 1/167만큼 연산량을 감소하였다.
이 논문은 고차원의 데이터를 저 차원으로 줄이는 방법 중 하나인 특징추출에 대한 방법들의 특성을 비교한다. 비교대상 방법은 전통적인 PCA(Principal Component Analysis)방법과 시각피질의 특성을 보인다고 알려진 ICA(Independent Component Analysis), 국소기반인식을 구현한 NMF(Non-negative Matrix Factorization), 그리고 이의 성능을 개선한 sNMF(Sparse NMF)로 정하였다. 추출된 특징들의 특성을 시각적으로 확인하기 위하여 필기체 숫자 영상을 대상으로 특징추출을 수행하였으며, 인식기에 적용한 효과의 확인을 위하여 추출된 특징을 다층퍼셉트론에 학습시켜보았다. 각 방법의 특성을 비교한 결과는 응용하고자 하는 문제에서 어떤 특징을 추출하기 원하느냐에 따라 특징추출 방법을 선정할 때 유용할 것이다.
Recently, causality analysis of source time series extracted from EEG or MEG signals is becoming of great importance in human brain mapping studies and noninvasive diagnosis of various brain diseases. Two approaches have been widely used for the analyses: one is independent component analysis (ICA), and the other is multiple signal classification (MUSIC). To the best of our knowledge, however, any comparison studies to reveal the difference of the two approaches have not been reported. In the present study, we compared the performance of the two different techniques, ICA and MUSIC, especially focusing on how accurately they can estimate and separate various brain electrical signals such as linear, nonlinear, and chaotic signals without a priori knowledge. Results of the realistic simulation studies, adopting directed transfer function (DTF) and Granger causality (GC) as measures of the accurate extraction of source time series, demonstrated that the MUSIC-based approach is more reliable than the ICA-based approach.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.