본 논문에서는 생체의 특징을 이용해 신분을 증명 또는 인증하는 생체인식 기술 중 지문이나 장문, 정맥, 홍채를 이용한 인식과 같이 장비에 접촉해야만 인증이 이루어지는 것과 달리 거부감이 없고, 별도의 전문 장비를 필요로 하지 않아 일반 대중들에 쉽게 접근할 수 있는 얼굴인식을 인터넷에 적용한 원격 신분증명 및 인증 시스템을 제안한다. 얼굴인식 알고리즘은 얼굴 특징을 분석하는 방식에 따라 PCA (Principal Component Analysis), ICA (Independent Component Analysis), FDA (Fisher Discriminant Analysis) 등이 발표되어 있다. 이들 알고리즘을 이용해 얼굴 특징을 분석한 결과를 원격지에 신속하고 정확하게 송수신할 수 있는 시스템이 요구됨에 따라 생체인식 시스템의 비교 평가와 함께 인터넷 상에서 얼굴인식을 이용한 원격 얼굴인식 시스템의 구성을 제안한다.
본 논문에서는 EEG 신호 기반 기기 또는 소프트웨어를 사용하기 위해 사용자가 본인의 EEG 신호 정확도를 확인하고, 훈련을 통하여 자신의 EEG 신호 정확도를 향상시킬 수 있는 시뮬레이션 소프트웨어를 제안한다. 실험 데이터로는 풍경사진을 보며 편안한 상태에서 발생되는 신호와 수학문제를 풀며 집중 시에 발생되는 신호를 사용한다. 입력되는 EEG 신호는 독립 성분 분석(Independent Component Analysis, ICA)을 적용하여 잡음을 최소화하고 대역 통과 필터(Band Pass Filter)를 통하여 베타파(${\beta}$, 14-30Hz)만을 취득한다. 취득한 베타파 대역 데이터에서 제곱평균제곱근(Root Mean Square, RMS) 알고리즘을 통하여 특징 정보를 추출하고 지지 벡터 머신(Support Vector Machine, SVM)에 적용하여 분류한다. 분류된 결과는 사용자가 바로 확인할 수 있으며 훈련 전 피험자의 평균 정확도는 79.21%이었던 반면, 연속적인 훈련으로 최고 91.67%의 정확도를 보였다. 이처럼 본 논문에서 개발한 시뮬레이션 소프트웨어는 사용자가 직접 자신의 EEG 신호 정확도를 향상키기는 훈련을 통하여 정확도 향상이 가능하고, EEG 신호 기반으로 이루어진 BCI 시스템의 효율적인 사용을 기대할 수 있다.
생체인식 기술은 현재까지 많은 발전을 거듭하고 있으며 국내에서도 연구는 물론 표준화작업 및 데이터 베이스 구축이 활발히 진행되고 있다. 생체인식은 신체의 여러 부분을 이용하는 방법과 습관에서 비롯된 특징을 이용하는 방법이 있는데, 본 연구에서는 이 중에서 개인의 필기습관 정보를 이용하여 인식하였다. 본 연구에서는 필기습관에 주목하여 서명하는 사람의 습관이 잘 드러나는 펜의 기울임과 눌림, 펜의 방위각도 둥의 성분이 표현되어지는 동적인 생채정보를 감지하고 특성을 추출할 수 있는 타블렛과 펜을 사용하여 서명정보를 추출한다. 이렇게 생성된 서명정보의 특징을 추출하기 위하여 패턴인식분야에 널리 활용하고 있는 주성분요소분석(PCA, Principal Component Analysis), 독립성분요소분석(ICA, Independent Component Analysis)기법에 적용하였다. 생성된 두 특징벡터 사이의 거리를 Euclidean Distance를 이용하여 구하고 Nearest Neighbor를 비교하여 인식률을 알아보고 교차인식(Cross Validation) 기법 중 하나인 Leave-One-Out 방법을 이용한 분류성능 측정을 통하여 데이터의 신뢰수준을 알아보았다.
얼굴인식에서 정보 이론적 접근방법은 얼굴 영상을 기저 영상의 합으로 분해하는 것을 기초로 한다. 가장 많이 쓰이고 있는 방법은 Principal Component Analysis (PCA)를 기반으로 하는 eigenface 방법이다. PCA를 기반으로 하는 방법은 데이터의 2차 통계적 구조만을 고려하므로 화소 사이의 고차 통계적 의존성은 고려되지 않는다. Factorial code 표현법은 효과적인 정보 표현의 좋은 방법으로 알려져 있고 이것은 Independent Component Analysis (ICA)와 밀접한 관련이 있다. Factorial code 표현법은 eigenface 방법과 비교할 때 중요한 정보가 포함되어 있는 데이터의 고차 통계적 구조도 고려되어 더욱 효과적인 정보 표현을 기대할 수 있다. 이 논문에서는 PCA를 이용하여 찾아낸 저차원 특징 공간에서 Factorial code 표현법을 이용하여 얼굴인식을 위한 통계적 특징점을 찾아낸다. 얼굴 인식에 있어서 Factorial code 표현법이 eigenface 방법보다 성능이 우수함을 모의실험을 통하여 입증한다.
자동차 배기음은 음성과 무관한 거의 독립적인 음원이라고 볼 수 있다. 따라서 자동차 배기음과 섞인 음성 신호의 경우에 두 음원에 대한 사전 정보가 없는 상황이므로 Blind Source Separation 의 한 방법인 Independent Component Analysis를 이용하여 분리해 내었다. 스테레오 마이크를 통해 섞여 들어 온 두 음원을 분리해 내기 위해 Maximum Likelyhood Estimation을 이용하여 각 신호들 사이의 독립성을 최대화 하는 방향으로 분리하였다. 분리된 신호는 어느 쪽이 음성 신호인지 알 수 없으므로 주파수 영역에서 자기 공분산을 구한 후 이 공분산 값들의 기울기를 이용하여 음성 신호와 자동차 배기음 신호을 구분하였으며 이 두 알고리즘을 결합하여 음성 신호 잡음 제거기를 구현하였다.
목적: 요소분석법. 독립성분분석법 등이 PET을 이용하여 심근혈류를 비침습적으로 측정하기 위하여 사용되어 왔다. 이론적으로 뛰어나고 새로운 방법인 앙상블 독려성분분석법을 이용하여 $H_2^{15}O$ 동적 심근 PET데이터의 정량분석방법을 개발하였다. 이 연구에서 사용한 앙상블 독려성분분석법을 이용하여 환자의 혈류를 정량화 하였다. 대상 및 방법: 관동맥질환이 의심되어 관류 SPECT를 시행한 환자 20명을 대상으로 $H_2^{15}O$ 동적 심근 PET을 시행한 후 앙상블 독립성분분석법을 이용하여 심근 독립성분영상을 추출하였으며, 좌심실영역과 심근영역에 대한 영상대조도를 조사하였다. 앙상블 학습은 독립성분과 가중치 행렬에 대한 확률분포를 가정하고 베이지안 이론에 의해서 혼합자료에 대한 확률분포를 추정한다. 이렇게 추정한 혼합자료의 확률분포와 실제 분포간의 차이인 Kullback-Leibler 발산치가 최소가 되도록 독립성분과 가중치 행렬을 순차적으로 변화시켜가며 최종 해를 찾는 방식이다. 이 연구에서 사후확률분포는 동적 핵의학 영상에 적합한 비음성제약조건과 함께 수정된 가우시안 분포를 이용하여 최적화 하였다. 혈류량은 심첨부, 중벽 네 부분, 하벽 네 부분의 9개 영역으로 나누어 측정하였으며, 측정결과에 대해 관류 SPECT 소견과 관동맥조영술의 소견과 비교하였다. 결과: 전체 20명의 휴식기 및 부하기 영상에서 5명을 제외한 15명의 데이터에 대해 심근혈류를 측정할 수 있었다. $H_2^{15}O$ 동적 심근 PET에서 앙상블 독립성분분석법을 이용하여 정량화한 휴식기 혈류량은 $1.2{\pm}0.40$ ml/min/g, 부하기 혈류량은 $1.85{\pm}1.12$ml/min/g이었다. 같은 영역에 대해 두 번 측정했을 때 측정된 심근혈류값의 상관계수는 0.99로 재현성이 높았다. 분리된 독립성분영상에서 영상대조도는 좌심실에 대한 심근영역의 비는 평균 1:2.7이었다. 관동맥 조영술을 시행한 9명에서 협착이 없는 분절과 협착이 있는 분절의 혈류예비능에 유의한 차이가 있었다(P<0.01). 또한, 관동맥조영술에서 협착이 확인된 66분절의 심근관류 SPECT 소견에서 가역적 혈류감소를 보인 분절의 혈류예비능이 더 많이 감소되는 경향을 보였으나 통계적 유의성을 보이지는 않았다. 결론: 앙상블 학습을 이용한 독립성분분석방법을 이용하여 심근혈류가 측정이 되었다. 앙상블 독립성분분석법을 이용한 $H_2^{15}O$ 동적 심근 PET 분석방법이 관상동맥 질환의 분석 및 동적 핵의학 영상 데이터의 연구에 도움이 될 것으로 기대된다.
목적: MRI를 촬영하면서 뇌전도 신호를 동시에 측정하는 것은 뇌기능 영상에 있어 매우 필요한 일이다. 그러나 MRI와 동시에 측정한 뇌전도 신호에는 많은 잡음이 유발되는데 이중 가장 심각한 영향을 주는 것은 경사자계에 의해서 유발되는 잡음이다. 경사자계 유발잡음을 ICA를 이용하여 효과적으로 제거하는 방법을 개발하고자 한다. 대상 및 방법: 29채널의 MR-compatible 뇌전도 측정시스템과 3.0 T MRI 시스템을 실험에 사용하였다. 3.0 T MRI 시스템 안에 뇌전도 캡을 쓴 피험자를 놓고 EPI 촬영을 하면서 뇌전도 신호를 측정하였다. 측정된 뇌전도 신호에 대하여 ICA를 적용해 경사자계 유발 잡음을 선택적으로 제거하였다. 제거한 결과를 평균화 방법과 PCA 방법을 사용해 얻은 결과와 비교하였다. 결과: ICA 방법, 평균화 방법 , PCA 방법 모두 경사자계 유발잡음 제거에 있어 일정 부분 효과가 있었다. 그러나 이들 방법들을 상호 비교하였을 때 잡음 제거 결과는 ICA 방법이 평균화 방법과 PCA 방법에 비해 우수하였다. 결론: ICA를 이용하여 경사자계 유발 잡음을 효과적으로 제거할 수 있었다. 잡음이 제거된 뇌전도 신호는 간질환자에 대한 뇌기능영상이나 뇌전도결합 fMRI 촬영에 활용될 수 있을 것이다.
Kim, Sun-Hee;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang
International Journal of Contents
/
제10권2호
/
pp.47-58
/
2014
Physiological signals provide important clues in the diagnosis and prediction of disease. Analyzing these signals is important in health and medicine. In particular, data preprocessing for physiological signal analysis is a vital issue because missing values, noise, and outliers may degrade the analysis performance. In this paper, we propose PhysioCover, a system that can recover missing values of physiological signals that were monitored in real time. PhysioCover integrates a gradual method and EM-based Principle Component Analysis (PCA). This approach can (1) more readily recover long- and short-term missing data than existing methods, such as traditional EM-based PCA, linear interpolation, 5-average and Missing Value Singular Value Decomposition (MSVD), (2) more effectively detect hidden variables than PCA and Independent component analysis (ICA), and (3) offer fast computation time through real-time processing. Experimental results with the physiological data of an intensive care unit show that the proposed method assigns more accurate missing values than previous methods.
Kim, Seungho;Lee, Sang Won;Lee, Seung Jae;Chang, Yongmin
한국멀티미디어학회논문지
/
제24권4호
/
pp.583-592
/
2021
Obsessive-compulsive disorder (OCD) is a mental disorder in which a person repeated a particular thought or feels. The domain of beliefs and guilt predicted OCD symptoms. Although there were some neuroimaging studies investigating OCD symptoms, resting-state functional magnetic resonance imaging (rs-fMRI) study investigating intra-network functional connectivity associated with guilt for OCD is not reported yet. Therefore, in the current study, we assessed the differences between intra-network functional connectivity of healthy control group and OCD group using independent component analysis (ICA) method. In addition, we also aimed to investigate the correlation between changed functional connectivity and guilt score in OCD. Total 86 participants, which consisted of 42 healthy control volunteers and 44 OCD patients, acquired rs-fMRI data using the 3T MRI. After preprocessing the fMRI data, a functional connectivity was used for group independent component analysis. The results showed that OCD patients had higher score in emotion state in beliefs and lower functional connectivity in fronto-parietal network (FPN) than control group. A decrease of functional connectivity in FPN was negatively correlated with feelings of guilt in OCD. Our results suggest excessive increase in guilt negatively affect to process emotional state and behavior or cognitive processing by influencing intrinsic brain activity.
본 논문에서는 실시간 얼굴인식 시스템을 위한 새로운 PCA 기반 LDA 혼합 알고리즘을 제안한다. 크게 얼굴추출 부분과 얼굴인식 부분으로 구성되어 있으며, 얼굴추출 부분에는 차영상, color filtering, 눈과 입의 영역 검출 그리고 정규화 방법을 사용하였고, 얼굴인식 부분에는 추출된 얼굴 후보 영역 영상에 PCA와 LDA를 혼합하여 적용하였다. 기존의 PCA만을 사용한 인식시스템은 낮은 인식률을 보였으며, LDA만을 사용한 인식시스템에서는 학습데이터의 수에 비하여 영상의 화소 개수가 많은 경우 LDA를 입력 영상에 그대로 적용하기 곤란하였다. 이러한 단점을 극복하기 위하여, 정규화 된 영상에 PCA를 적용하여 차원을 축소한 후 LDA를 사용하여 실시간 인식을 가능하게 하였으며, 인식률 또한 향상시킬 수 있었다. 제안한 시스템의 성능을 평가하기 위하여 자체 제작한 DAUface의 데이터베이스를 가지고 실험을 하였다. 실험 결과, 제안된 방법이 PCA 방법과 LDA 방법, 그리고 ICA 방법에 비해 인식률이 상당히 우수함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.