• Title/Summary/Keyword: Indentor

Search Result 30, Processing Time 0.027 seconds

Dissolution of Carbide Particles at the Heat Affected Zone of Laser Welded tow Carbon Steel (저탄소 박판강재의 레이저 용접과정에서 열영향부에 존재하는 탄화물 입자의 분해 거동)

  • 김기철;조흥규;정호신
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.809-815
    • /
    • 2002
  • Metallurgical behavior of laser welded cold rolled low carbon steel was investigated. Welding was performed with CW Nd:YAG laser system. Applied laser power, travel speed and nitrogen blowing pressure were 720W CW, 17mm/s and 196kPa, respectively. According to the test results, many carbide particles were observed on the base metal surface that was polished and etched with nital solution. The carbide particles at the welding heat affected zone were thought to be dissolved during welding process. Microstructural inspection revealed that dissolved carbide particles formed mixed phase of very fine martensite and bainite. Test results also demonstrated that the hardness of matrix remained constant value of around 160Hv over the welding heat affected zone. Dissolved carbide particles, however, showed higher average hardness values of around 276Hv near the fusion boundary and 700Hv at the welding heat affected zone of 0.4mm apart from the fusion line. It was considered that care should be given to minimize the test error when measuring the hardness value since many of the dissolved particles were so small that it was not easy to aim the indentor of the testing machine just on the objects.

The Characteristics of Acoustic Emission of $Al_2O_3$ Ceramics by an Amount of Additive $Y_2O_3$ (소결조제 $Y_2O_3$ 함유량에 따른 $Al_2O_3$ 세라믹스의 음향방출 특성)

  • Kim, Jin-Wook;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.71-75
    • /
    • 2008
  • This paper illustrates haw $Y_2O_3$ contributes to crack-healing strengths as a function of crack-healing temperature and the additive amount. In investigating mechanical properties, the indentation fracture method is very simple and useful, but careful attention must be paid to the statistical data processing because data may be scattered excessively, especially for brittle materials. To estimate accurate AE signal properties we applied the useful time-frequency method with a discrete wavelet analysis algorithm. In experiments, three kinds of specimens were prepared. After the specimens were indented by a Vickers indentor, they were heat-treated and crack-healed to evaluate bending strength and the AE signal. With higher amounts of the additive powder, as 1, 3, or 5% wt. of $Y_2O_3$, the concentrative tendency of dominant frequency trended toward lower frequency groups. The $Al_2O_3$ ceramic with 3% wt. of $Y_2O_3$ was judged most suitable because it demonstrated superior crack-healing ability and relative concentration on the highest frequency group.

Thermal and Mechanical Properties of a N2 Doped Porous 3C-SiC Thin Film (질소가 도핑된 다공질 3C-SiC 박막의 열적, 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.651-654
    • /
    • 2010
  • This paper describes the thermal and mechanical properties of doped thin film 3C-SiC and porous 3C-SiC. In this work, the in-situ doped thin film 3C-SiC was deposited by using atmospheric pressure chemical vapor deposition (APCVD) method at $120^{\circ}C$ using single-precursor hexamethyildisilane: $Si_2(CH_3)_6$ (HMDS) as Si and C precursors. 0~40 sccm $N_2$ gas was used as doping source. After growing of doped thin film 3C-SiC, porous structure was achieved by anodization process with 380 nm UV-LED. Anodization time and current density were fixed at 60 sec and 7.1 mA/$cm^2$, respectively. The thermal and mechanical properties of the $N_2$ doped porous 3C-SiC was measured by temperature coefficient of resistance (TCR) and nano-indentation, respectively. In the case of 0 sccm, the variations of TCR of thin film and porous 3C-SiC are similar, but TCR conversely changed with increase of $N_2$ flow rate. Maximum young's modulus and hardness of porous 3C-SiC films were measured to be 276 GPa and 32 Gpa at 0 sccm $N_2$, respectively.

Effect of Si Wafer Ultra-thinning on the Silicon Surface for 3D Integration (삼차원 집적화를 위한 초박막 실리콘 웨이퍼 연삭 공정이 웨이퍼 표면에 미치는 영향)

  • Choi, Mi-Kyeung;Kim, Eun-Kyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.63-67
    • /
    • 2008
  • 3D integration technology has been a major focus of the next generation of IC industries. In this study Si wafer ultra-thinning has been investigated especially for the effect of ultra-thinning on the silicon surface. Wafers were grinded down to $30{\mu}m\;or\;50{\mu}m$ thickness and then grinded only samples were compared with surface treated samples in terms of surface roughness, surface damages, and hardness. Dry polishing or wet etching treatment has been applied as a surface treatment. Surface treated samples definitely showed much less surface damages and better roughness. However, ultra-thinned Si samples have the almost same hardness as a bulk Si wafer.

  • PDF

Alignment and lattice quality of hexagonal rings of hexagonal BN films synthesized by ion beam assisted deposition (이온빔보조증착법으로 합성한 hexagonal BN막의 hexagonal ring의 배열과 결정성)

  • 박영준;한준희;이정용;백영준
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • We have studied the alignment and the lattice quality of hexagonal rings of h-BN films synthesized by ion beam assisted deposition (IBAD) method. Boron was e-beam evaporated at 1.5 $\AA$/sec and nitrogen gas was ionized using end-hall type ion gun at 60, 80, and 100 eV, respectively. Substrate was either not heated or heated at 200, 400, 500, and $800^{\circ}C$, respectively. As nitrogen ion energy increases, c-axes of hexagonal rings tend to align parallel to the substrate, which is explained by larger compressive stress at higher ion energies. Alignment of c-axis increases with temperature and shows maximum around $400^{\circ}C$. The lattice quality of hexagonal rings improves with temperature. Such behaviors can be understood from two counter trends of increasing the atomic mobility and decreasing compressive stress with temperature. Hardness of h-BN films shows the same trend with the alignment of c-axis. Ion beam assisted deposition method seems to be effective for aligning hexagonal rings and optimizing h-BN properties.

  • PDF

The Heat Treatment Characteristics of Hydroxyapatite Thin Films Deposited by RF Sputtering (RF 스퍼터링으로 증착된 하이드록시아파타이트 박막의 열처리 특성)

  • Jung, Chan-Hoi;Lee, Jun-Hee;Shin, Youn-Hak;Kim, Myung-Han;Choi, Sock-Hwan;Kim, Seung-Eon
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.218-224
    • /
    • 2006
  • RF sputtering process was applied to produce thin hydroxyapatite(HAp) films on Ti-6Al-4V alloy substrates. The effects of different heat treatment conditions on the hardness between HAp thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the Ti-6Al-4V alloy substrates were heat treated for 1h at $850^{\circ}C\;under\;3.0{\times}10^{-3}torr$, and after deposition, the HAp thin films were heat treated for 1h at $400^{\circ}C,\;600^{\circ}C\;and\;800^{\circ}C$ under the atmosphere, and analyzed FESEM-EDX, FTIR, XRD, nano-indentor, micro-vickers hardness, respectively. Experimental results represented that the surface defects of thin films decreased by relaxation of internal stress and control of substrate structure followed by heat treatment of substrates before the deposition, and the HAp thin films on the heat-treated substrates had higher hardness than none heattreated substrates before the deposition, and the hardness properties of HAp thin films and Ti-6Al-4V alloy substrates appeared independent behavior, and the hardness of HAp thin films decreased by formation of $VTiO_3(OH),\;{\theta}-Al_{0.32}V_2O_5,\;Al_{0.33}V_2O_5$.

Cu 함량 변화에 따른 Mo-N-Cu 박막의 특성 및 내마모 특성 평가

  • Choe, Min-Gi;Jo, Seong-U;Gwon, Jeong-Dae;Kim, Jong-Guk;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.227-227
    • /
    • 2010
  • 동력 전달을 위한 구동 부품에 대한 내마모성 개선을 통한 에너지 효율 및 부품의 수명 향상에 대한 사회적 관심이 급증하고 있다. 특히, 최근에는 자동차용 구동부품에 저마찰 내마모 특성이 우수한 Mo-N-Cu 나노복합체 박막에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 Mo-N-Cu 나노복합체 박막을 마그네트론 스퍼터링 증착법을 활용하였고, 이때 Mo 및 Cu 타겟을 적용하여 동시에 증착하였다. 진공 챔버의 진공도는 $5{\times}10^{-6}\;Torr$ 이하의 초기 진공도를 확보한 이후, 알곤 및 질소 가스를 주입하여 공정 압력이 5 mTorr 수준이 되도록 하였다. 이때 N2/(Ar+N2) = 0.5를 유지하였다. Mo-N-Cu 박막내에 Cu 함량 변화를 위해 Mo 캐소드는 D.C. 1 kW로 고정하고 Cu 캐소드에 R.F. 파워를 0, 40, 60, 80 W로 변화하였다. 박막의 두께는 증착시간을 변화하면서 $1\;{\mu}m$ 이상이 되도록 하였다. Cu 캐소드에 인가된 파워의 변화에 따라 Mo-N-Cu 박막내 Cu 함유량은 10 at.%까지 변화되는 것을 EDX 분석을 통해 확인하였다. 또한 증착된 Mo-N-Cu 박막의 표면 및 단면에 대한 FE-SEM 분석을 통하여 전형적인 주상구조를 지닌 MoN 박막에서 Cu 함량이 증가할수록 Mo-N-Cu 박막의 결정성을 방해하는 것을 확인하였다. 또한 XRD 분석을 통하여 박막의 결정 구조 분석을 하였고, Nano Indentor를 통하여 30 GPa 수준의 고경도를 지닌 박막이 형성됨을 확인하였다. 박막의 내마모 특성 평가를 위해 ball-on-disk 트라이보미터를 활용하여 마찰계수 평가를 수행하였고, Cu 함유량의 변화에 따라 마찰계수가 MoN 박막의 경우 0.8에서 Cu 함량이 5 at.%에서 0.15로 급격하게 낮아짐을 확인하였다.

  • PDF

Study on the Hardness Measurement of Earthenware : Focusing on the Cup of the Baekje (토기의 경도측정법 연구: 백제시대 배(杯)류를 중심으로)

  • Moon, Eun-Jung;Kang, Hee-Jun;Kim, Su-Kyoung;Lee, Han-Hyoung;Hong, Jong-Ouk;Hwang, Jin-Ju
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.431-438
    • /
    • 2009
  • We have investigated the suitable measuring method and condition on the hardness testing for the earthenwares excavated from Poongnap mud castle in Hanseong Baekje period. The earthenwares which used on hardness testing have been classified according to Mohs hardness and external form and color. The Ultrasonic and Equotip testing method have used to the hardness testing on the surface of the earthenwares and the Rockwell and Micro-vickers testing methods have used to the hardness testing on the cross section of the earthenwares. As the results, the two methods applied to the surface of the earthenwares were very hard on the precise measurement and the measuring values were incompatible with the tendency classified according to Mohs hardness and external form and color. On the testing for the cross section of earthenware, the Rockwell-superficial hardness testing method was more suitable for the soft texture earthenware and highest reproducibility of the measuring value obtained at the test load and indentor are 15kgf and 1/16 “iron ball, respectively. The Micro-Vickers hardness testing method was suitable for the hard texture earthenware and highest reproducibility and accuracy of the measuring value obtained at the test load is 100gf. This results show strong possibility of progress on the classifying and comparing study for hardness of the earthenware and therefore active studies are expected on the field.

  • PDF

Coating and Characterization of Al2O3-CoO Thin Films by the sol-gel Process (졸-겔법을 이용한 Al2O3-CoO계 박막의 제조와 특성에 관한 연구)

  • Shim, Moonsik;Lim, Yongmu
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.123-128
    • /
    • 1999
  • This paper reports the preparation and characterization of colored coatings of $Al_2O_3$-CoO. Films of 25mol% CoO doped $Al_2O_3$, have been prepared on soda-lime-silica slide glasses by the sol-gel process from Al-alkoxide and Co-nitrate. The films have been characterized by a photospectroscopy and hardness tester. The color, spectral reflectance and spectral transmittance of the films was expressed in Lab color chart and on spectra plot. Microhardness of the films increased with increasing of the heating temperature. Transmittance and reflectance of the films decreased with increase of the heating temperature and coating times. The coating films showed various light-yellow, deep-yellow, greenish-yellow color as a function of the coating times and heating temperature.

  • PDF

The Characteristics of Acoustic Emission Signal under Composite Destruction on GFRP Gas Cylinder (유리섬유강화 복합재료 가스실린더의 복합재료 파괴시 발생하는 음향방출 특성)

  • Jee, Hyun-Sup;Lee, Jong-O;Ju, No-Hoe;So, Cheal Ho;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.430-435
    • /
    • 2013
  • This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appered when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.